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The steps which form part of the VLBI correlation chain (digitisation, delay correction, channeli-

sation and integration) can be reordered to reduce the associated losses. This involves processing

as much as possible at the antenna site before passing through the rate limiting step of recording

to disk, or streaming over network connections. We present our plans for such an implementation,

and the gains that this approach will produce. We present theresults from our first steps towards

this goal, for which we are experimenting with a Graphics Processing Unit (GPU) to perform the

antenna based corrections. This step involves using the GPUs to provide an autocorrelator to run

in parallel to the VLBI data recorder.
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1. Introduction

We present our ideas for a Graphics Processing Unit (GPU)-based real time pre-processor (chan-
neliser) which will form part of a distributed FX correlator. We show our results from the early
investigations. This project isnot an attempt to utilise GPUs in a software correlator, which we
could expect to be an important but incremental advance in the performance of such VLBI cor-
relator solutions. Instead we aim to reorder the data processing chain in such a way as to deliver
higher performance overall. The technology which will allow this is the combination of disk-based
recorders and GPUs. Disk based recorders are now common among VLBI networks, for example
the Australian data recording system as described in these proceedings [1].

The traditional data processing chain is correlator dependent but generally has the following
processes:
• Wide bandwidth baseband analogue output from the first stageamplifiers and down-conversion.
• Filtering to narrow bandwidth and digitization to 2 bits persample.
• Recording on or transferring via data-rate limited media: disk or internet connection.

And at the correlator:
• Channelisation
• Delay compensation
• Fringe rotation
• Cross correlation
• Integration

Potential losses [2] associated with these steps are: 12% loss for perfect Gaussian noise inputs 2-bit
sampled at the correct transition voltages and 8% fringe rotation loss if a 3-level fringe rotation is
used. There is a discrete delay step loss if the samples are not aligned on the timing boundary. In
the best case, when the delays are calculated for the centre of the band rather than the edge, this
is 3%. These losses give a net ‘efficiency’ of 0.78 or a ‘correlation loss’ of 22%; a net equivilent
increase of Tsys of 27%.

An alternative data processing chain is;
• Wide bandwidth baseband analogue output from the first stageamplifiers and down-conversion.
• Filtering to narrow bandwidth, digitization to 8 bits per sample and reading into the computer
recording system.

And on the GPU
• Channelisation
• Delay compensation
• Fringe rotation
• RFI mitigation
• Reduction to 2 bits per sample, or better, encoding.
• Recording on or transferring via data-rate limited media: disk or internet connection.

And at the correlator
• Cross correlation
• Integration
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By maximising the processing done before the quantisation we can effectively eliminate all of the
losses except the 2-bit quantisation loss. Also, perhaps more importantly, we can remove the broad
spectrum contamination from any Radio Frequency Interference (RFI) before the quantisation.
Receiver noise containing RFI does not have a Gaussian distribution of voltages, therefore is poorly
quantised by the simplistic 2-bit 4-level encoding, producing contamination in nearby frequency
channels. Strong Maser lines have similar issues. At a lesser level the bandpass edges, where
the gains roll off, are similarly poorly handed by this encoding approach because the transition
voltages are no longer optimal. These problems can be overcome by preprocessing the data before
quantisation as having a high number of bits per sample avoids these issues. The CABB and
WIDAR correlators also form their channels with a high number of bits per sample, but do not
reduce this for transfer to a distant correlator, as they arenot designed for VLBI usage.

To expand on the steps and their gains:

For any FX correlator the first step is to convert from time based samples, sampled at∆t, to a
frequency based representation. This is conventionally done with an FFT (but it could be done with
a polyphase filter bank as for the CABB correlator). The FFT can take complex or real samples
to produce a channelised output, where the number of channels (N) equals the number of complex
inputs or half the number of real inputs and the channel widthis the reciprocal of N×∆t.

Once the data is channelised it is trivial to apply phase and delay corrections as provided by some
a-priori model, normally via the defacto standard, CALC [3]. In the Fourier domain we can apply
fractional delay corrections as we are not constrained to the sample time boundaries. Therefore we
no longer suffer from the discrete delay losses. Furthermore as all inputs have high numbers of bits
per sample the fringe rotation can also be done at full resolution, removing the associated losses
from that operation.

Questions have been raised as to whether the fringe rotationcorrection, which introduces a corre-
lated correction across the bandpass, implies that the ‘random noise’ assumption required for this
encoding is broken. We counter this argument as follows. Theinput is white noise, each FFT
accepts N complex (or 2N real) samples of∆t and the FFT forms N channels of frequency width
1/(N ∆t). The samples in these channels are independent, as the input is white noise. The fringe
rotation applies a phase shift per channel, which is coherent across the bandpass, but as the in-
put numbers are random the output is also random. Finally as the samples are random, then the
spectrum is white noise, and 2-bit/4-level encoding will work correctly. The thresholding level is
set independently for each channel, so bandpass gain rolloff and interference peaks are correctly
handled.

The approach is only really feasible in the age of eVLBI as previous suggestions for antenna based
preprocessing, in particular LO Doppler shift corrections, had to be abandoned for reliability rea-
sons. Now VLBI systems have end-to-end continuous reliability checking we can transfer signifi-
cant portions of the correlation to the antennas. This has the advantage of making much better use
of the distributed processing power on-site, and has the potential advantage of reducing the corre-
lator power requirements. This can be significant in remote array sites (such as for the Murchison
Radio Observatory, where ASKAP is being built).
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2. Progress towards the distributed FX correlator

2.1 Target hardware: GPUs

GPUs are currently co-processor units, which sit on the PCI-bus, and are designed to perform the
highly parallel calculations required for the high definition graphics called for in modern computer
applications; mostly games. They can now be programmed reasonably easily, with languages such
as CUDA or OpenCL, to tackle generalised high performance computing problems. They have a
high number of independent threads, so are suitable for parallel processing problems, but the PCI
bus limits the IO on and off the cards. Furthermore there are more intricate issues with memory
on the card as there are several layers of resources split between the different GPU threads. It is
possible to make what is nominally a highly parallel problemrun much slower than it would on
a CPU by poor implementation of memory usage. We are developing our system on a GPU as it
seems to offer a very cheap solution to the processing requirements for this project, and gives us
the opportunity to learn about these problems.

2.2 Progress so far

We decided to use CUDA, as the language is very ‘C-like’ whichwill minimise the development
time. OpenCL was not yet released when we started the project. This limits us to NVIDIA cards.
Our demonstration is going to be with the LBA data recording system, referred to above. This
system has limited space for additional cards, and so we are limited to a single slot. The most
powerful NVIDIA GPU we could obtain which has a single slot profile is the 9800GT, a GeForce
series 9, costing∼$300. Our model had 0.5 GB of memory.
The PCI IO rate is nominally 4GB/s. Assuming that we work at 8 bits per (real) sample we should
therefore be able to handle 2 GHz of bandwidth. However we also need to be able to FFT this data,
process it and stream it back off the card. Fortunately CUDA can now support asynchronous reads
and writes, so we could stream (float; i.e. 32 bit) data onto (and off) the card whilst processing
the current data block. With this program structure we tested three NVIDIA cards: our 9800GT, a
GTX 285 with 1 GB, and a FX-1700 Quadro.
We performed the simple experiment of transferring a block of float-sized data, transforming it, and
transferring the output back. These operations were in different streams, and the FFT was found
to be the rate limiting step. We experimented with differentFFT sizes to find the most efficient
mode. Figure 1 reproduces these results. We have demonstrated that the 9800GT card can sustain
datarates the equivalent of 120 MHz (i.e. in this case 240 M (real) samples) when loading and
channelising our target datasets. We also note that the turnover in performance is when the FFT
requirements are greater than on-card memory, and for the GTX 285 with double the capacity the
performance continues to rise.
Following the demonstration that the card was capable of achieving the goals we had set ourselves
we set to providing a real-life, if not real-time, demonstration. We took some of the data recorded
at 256 Mb/s from the previous VLBI session and adapted the existing auto-correlator LBA program
(fauto) to run on the GPU (gauto). This was a far from optimum approach as the program structure
was not suited to running in a streamed mode, nor performing the 2 bit to float decoding on the
card, both of which can be expected to provide significant speed ups. Nevertheless we were able
to process the data and form autocorrelations using the GPU.In the process we discovered how
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Figure 1: Data Rates, in equivalent bandwidth, with increasing buffersize. The most efficient processing to
for the largest transfers.

Figure 2: A screen-shot showing of the autocorrelations formed on theGPU. The datafile was recorded for
10 seconds at 256 Mb/s. The autocorrelations are processed,on average, within 10 seconds.
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sensitive the performance was to efficient memory management. Figure 2 shows the successful
autocorrelation of 10 second data files recorded from Tidbinbilla for experiment V293A.

2.3 Steps to be done

We have successfully applied for NVIDIA support to extend this project, and are advertising an
internship to work on the delay compensation, RFI mitigation, quantisation and off-card streaming
steps.

3. Conclusions

We propose a reordering of the VLBI correlating processing chain to provide significant improve-
ments in efficiency, and transfer the bulk of the processing to the antenna site. We have demon-
strated that low cost GPUs can provide the computing power required. We have written a simple
autocorrelator to run in parallel with the data recording onthe LBA to provide us with experi-
ence towards our goal and a realtime auto-correlator for these antennas. We plan, with the help
of NVIDIA, to develop this alternative correlator approach. We look forward to reporting on the
outcomes of these investigations.
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