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The KOTO experiment is the E14 at J-PARC, designed to discoverKL → π0νν̄ events based

on the KEK-PS E391a experiment. The CP-violation parameter, η , can be determined from the

branching ratio ofKL → π0νν̄ with 1−2 % theoretical uncertainty and it is highly sensitive to the

TeV-scale new physics beyond the Standard Model (SM). In order to achieve the SM sensitivity,

an improvement of three orders of magnitude is needed for KOTO, compared to E391a. We aim

to discoverKL → π0νν̄ events in 3 years from 2011, using high intensity beam at J-PARC to

increase the number ofKL, constructing new beamline to suppress halo neutrons, and upgrading

the E391a detector to suppress backgrounds based on the E391a experience.
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1. The KOTO experiment and KL → π0νν̄

The KOTO experiment is the E14 [1] at J-PARC which is a high intensity proton accelerator
complex at Tokai in Japan and the KOTO is an abbreviation of “K0 at Tokai”. The collaboration is
based on KEK-PS E391a [2] collaboration and aim to discoverKL → π0νν̄ events in three years
from 2011 with a similar method used in the E391a experiment.

1.1 Motivation of KL → π0νν̄ search

There are mainly two motivations for the search ofKL → π0νν̄. First, the process,KL → π0νν̄ ,
is a direct CP-violating process and the branching ratio is proportional to the square of theη which
is one of the Wolfenstein parameters deciding the imaginary component in the CKM matrix. The
CP-violating parameter,η , can be determined through the measurement of the branching ratio,
where theoretical uncertainty is 1−2% [3] in the Standard Model (SM) framework. Second, it is
a rare flavor-changing neutral current and highly suppressed in theSM, where the branching ration
was calculated to be(2.49±0.39)×10−11 [4]. The branching ratio is very sensitive to the new
physics beyond the SM and there are plenty rooms for such new physics [7] below the current
limit, 1.46× 10−9 [6] at 90% confidence level (CL). We have a chance to reach such TeV-scale
new physics throughKL → π0νν̄ .

1.2 Current situation for KL → π0νν̄ search

The current theoretical limit, 1.46×10−9 [6] at 90% CL (Grossman-Nir bound [5]), was ob-
tained indirectly with both the isospin symmetry and the measured branching ratio of K+

→ π+νν̄
at BNL E797/E949, which is 1.73+1.15

−1.05×10−10 [6]. The direct limit was obtained by E391a, which
is 6.7×10−8 [2] at 90% CL1 with no events left after all the final cuts.

2. Concept of the KOTO experiment

The KOTO experiment adopts the same concept with the E391a experiment. The beamline
and detector concepts are written as follows.

2.1 Beamline

TheKLs are generated from proton hits on a target, where many other particles are produced at
the same time. Short-lived particles are vanished within a long beamline to the detector. Charged
particles are swept out by a magnet. Photons are reduced with a Pb absorber, keeping the loss of
KL small. A collimator is used to make a narrowKL beam along the beam axis, the reason of which
will be explained in the next subsection. Neutrons also exist in the narrow beam (core neutrons)
and some neutrons are scattered on the collimator wall and become halo neutrons surrounding the
core neutrons.

1E391a will update the value through the analysis of the remaining data soon
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2.2 Detector

The detection principle forKL → π0νν̄ is only two gammas from theπ0 decay and nothing.
Therefore a calorimeter to detect the two gammas and hermetic veto detectors are essential.

For the hermetic veto, a veto detector in the core beam at the downstream (beam hole veto) is
necessary, whereas the operation of the detector with high detection efficiency is difficult inside the
huge flux of gammas and core neutrons. The narrow beam is required primarily to limit the size of
the beam hole veto detector.

On the other hand, for theπ0 reconstruction, the opening angle of the two gammas detected
in the gamma calorimeter is calculated with a relation,M2 = 2E1E2(1−cosθ), whereM is theπ0

mass, theE1 andE2 are gamma energies, and theθ is the opening angle of the two gammas. The
π0 decay vertex is reconstructed with the opening angle together with the detected positions of the
two gammas at the calorimeter, assuming the vertex is on the beam axis. The narrowly collimated
beam assure this condition and then the reconstruction of the transverse momentum (pT ) of the
π0 with enough resolution, which is one of the most important discriminants of the signal from
backgrounds. The narrow beam is required also from this second viewpoint.

The gamma calorimeter and hermetic veto detectors, and narrowly collimated beamare the
most important points for the detector concept.

3. Strategy from the E391a to KOTO experiment

In order to achieve the SM sensitivity forKL → π0νν̄, an improvement of three orders of
magnitude in the sensitivity is needed for KOTO, compared to E391a. The number ofKL have to
be increased at first. For the backgrounds, the main background source was estimated to be the halo
neutron in E391a [2]. Such halo neutrons interact with the detector components near the beam axis
and produceπ0 or η mesons which decay into two gammas. Suppression of such halo neutrons is
the second point. Finally, the detector upgrade is necessary to suppresshalo-neutron backgrounds
at the detector by reducing positions where halo neutrons hit or by making thedetector sensitive
to theπ0 or η productions. Detector efficiencies also should be increased to suppress KL → 2π0

background.

4. High intensity beam to increase the number of KL

The proton intensity becomes 97 times higher with J-PARC, whereas theKL intensity becomes
29 times higher due to the larger extraction angle at KOTO. The momentum of theKL becomes
smaller as shown in Fig. 1 and the decay probability becomes twice. The improvement factor of
3800 is achieved with longer run time and larger acceptance as shown in Table. 1.

5. New beamline to suppress halo neutron

The new beamline was already designed and is now under construction at J-PARC. The schematic
drawing of the beamline is shown in Fig. 2, where the total length is 21 m and the 1st collimator,
the sweeping magnet, and the 2nd collimator are aliened in 16◦ direction from the primary proton
direction. The target consists of five Ni disks with the total thickness of 53.9mm as shown in
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Figure 1: The momentum distributions for KOTO (solid line) obtained from the Geant4 simulation and for
E391a (dashed line) used in the experiment [1].

Table 1: Comparison between the KOTO and E391a beam.
KOTO E391a (Run2) Improvement factor

Proton energy 30 GeV 12 GeV
Number of protons per spill 2×1014 2.5×1012

Spill/cycle 0.7 sec / 3.3 sec 2 sec / 4sec
Extraction angle 16 ◦ 4 ◦

Solid angle 9 µsr 12.6µsr
KL yield/spill 7.8×106 3.3×105

×29/sec
Run Time 12 months 1 month ×12
Decay Probability 4% 2% ×2.0
Acceptance 3.6% 0.67% ×5.4

×3800 in total

Figure 2: Schematic drawing of the beamline. Figure 3: The target.

Fig. 3. So the shape of the beam image on the target is horizontally wide rectangular shape. To fit
this and the square beam hole at the gamma calorimeter (CSI in Fig. 5), a rectangular beam hole is
adopted for the collimators. The beam size is narrowly collimated with the solid angle of ∼ 9 µsr
and the collimator is also designed to suppress halo neutrons, avoiding neutron scatterings on the
collimator wall. The horizontal and vertical profiles at the gamma calorimeter areshown in Fig. 4.
In this design, the number of halo neutrons is suppressed to 5 orders of magnitude compared to that
of core neutrons, which is about 10 times better than E391a [8].
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Figure 4: Horizontal (left) and vertical (right) profiles at the gammacalorimeter.

Figure 5: The KOTO detector. Figure 6: The CV at E391a
(left) and at KOTO (right).

6. Detector upgrade to reduce backgrounds

The KOTO detector is shown in Fig. 5, where the FB is the same detector used in E391a,
the thickness of MB is increased from the E391a MB, other detectors are replaced from those
used in E391a. The background estimations for E391a Run2 analysis andfor KOTO are shown
in Table. 2 [2] and Table. 3, respectively. The “CC02” background originates fromπ0 production
by halo neutrons hitting CC02. The “CV-π0” and “CV-η”backgrounds originate fromπ0 andη
production by halo neutrons hitting CV, respectively. The halo neutron backgrounds in KOTO are
reduced both with the halo neutron suppression and with detector upgrades at CV and CC02 as
follows.

6.1 CV upgrade

The KOTO CV consists of two layers, removing the inner part as shown in Fig. 6, whereη was
produced and became backgrounds at E391a. The inner hole size of the front part is enlarged and
its thickness is reduced from 6 mm to 3 mm, avoiding halo neutron interactions. Furthermore, it is
moved to downstream by 25 cm far from the signal region, reducing the background contamination
to the signal region. The detector is a plastic scintillator plane with wavelength shifting fibers
(WLSFs) and MPPCs are used as photon sensors. Such prototype testis in progress.

6.2 CC02 upgrade, NCC

The position is moved to upstream by 30 cm from E391a case, far from the signal region. The
detector was a Pb and plastic scintillator sampling detector in E391a, which is changed to a CsI
full active detector, Neutron Collar Counter (NCC),increasing veto performance toπ0 production.
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Table 2: Background estimation at E391a
(Run2) [2].

KL BG Kπ2 0.11±0.09

halo-n BG
CC02 0.16±0.05
CV-π0 0.08±0.04
CV-η 0.06±0.02

Table 3: Signal and background estimation at
KOTO.

Signal Kπνν 2.7

KL BG Kπ2 1.7

halo-n BG
CC02 0.01
CV-π0 0.08
CV-η 0.3

The detector is pure CsI crystals with wavelength shifting fibers which absorb UV light and emit
blue light. With such WLSF readout, segmentation in z and radial directions canbe achieved and
it can measure the flux of halo neutrons with central crystals using surrounding crystals as veto in
order to reduce gamma contamination. Its prototype test is in progress and enough light yield was
already obtained.

6.3 CSI and MB upgrade

In E391a, 7×7×30 cm crystals were mainly used, which is changed to 2240 crystals with a
dimension of 2.5×2.5×50 cm and 328 crystals with a dimension of 5×5×50 cm in KOTO. They
were used in the KTeV experiment and all the crystals were moved to Japan and are now tested.
The thickness of MB is increased to 18.5 radiation length from 14. Those improve the photon veto
performance to suppressKL → 2π0 background.

7. Summary and prospects

The KOTO experiment is designed to discoverKL → π0νν̄ events based on the understanding
of the background sources in E391a. The detector upgrade from E391a is designed and the proto-
typings and tests are in progress. The beamline construction and test experiment for beam survey
will be done in this fiscal year and CsI calorimeter construction and engineering run with it will be
done in 2010, the physics run will start from 2011 and we aim to discoverKL → π0νν̄ events in
three years.
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