PROCEEDINGS OF SCIENCE

PoS

Search for the QCD critical point at SPS energies

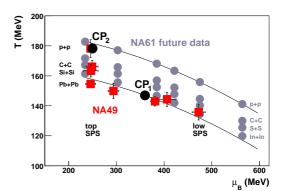
Katarzyna Grebieszkow* for the NA49 [†]and the NA61/SHINE [‡]Collaborations

Warsaw University of Technology E-mail: kperl@if.pw.edu.pl

> Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed.

European Physical Society Europhysics Conference on High Energy Physics, EPS-HEP 2009, July 16 - 22 2009 Krakow, Poland

*Speaker.


[†]See http://na49info.web.cern.ch/na49info/na49/Collaboration/authors.html

[‡]See https://na61.web.cern.ch/na61/xc/index.html?O=authors

1. Introduction and motivation

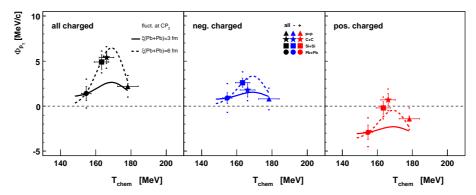
Theoretical calculations suggest that the critical point (CP) of strongly interacting matter may be accessible in the SPS energy range [1]. We have studied event-by-event average p_T and multiplicity fluctuations, as well as transverse mass spectra of baryons and anti-baryons which are suggested observables sensitive to effects of the CP in ultra-relativistic heavy ion collisions.

The effects are expected to be maximal when freeze-out happens near the critical point. The position of chemical freeze-out point in the $(T - \mu_B)$ diagram can be varied by changing the energy and the size of the colliding system (Fig. 1). Therefore we have analyzed in NA49 [2] the energy dependence of the proposed CP sensitive observables for central Pb+Pb collisions (beam

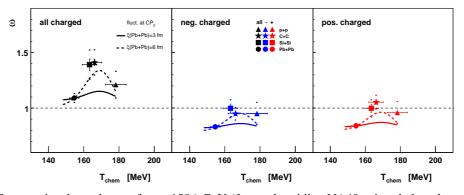
Figure 1: Chemical freeze-out points in NA49 (red) and those expected in NA61 (violet). *CP*₁ and *CP*₂ were considered in NA49 as possible locations of the critical point: $\mu_B(CP_1)$ from lattice QCD calculations [1] and *CP*₂ assuming that the chemical freeze-out point of p+p data at 158A GeV may be located on the phase transition line.

energies 20A-158A GeV), and their system size dependence (p+p, C+C, Si+Si, and Pb+Pb) at the highest SPS energy.

2. Event-by-event average p_T and multiplicity fluctuations


Enlarged event-by-event fluctuations of multiplicity N and mean p_T were suggested as a signature of the critical point [3]. The NA49 experiment used the Φ_{p_T} correlation measure [4, 5] and the scaled variance of the multiplicity distribution ω [6, 7] to study average p_T and N fluctuations, respectively. For ω , we selected very central collisions only (1% most central) due to its strong dependence on fluctuations of the number of participants N_{part} .

The energy (μ_B) dependence of Φ_{p_T} and ω together with predictions for CP_1 were presented at this conference (see also [8]). The NA49 data show no significant peak in the energy dependence of Φ_{p_T} and ω at SPS energies thus providing no indications of the critical point at CP_1 (see Fig. 1).


Figures 2 and 3 present the system size (T_{chem}^{1}) dependence of Φ_{p_T} and ω . The lines correspond to predictions for CP_2 (see Fig. 1) with estimated magnitude of the effects ² for Φ_{p_T} and ω at CP_2 taken from Ref.[3, 9] assuming correlation lengths ξ decreasing monotonically with decreasing system size: a) ξ (Pb+Pb) = 6 fm and ξ (p+p) = 2 fm (dashed lines) or b) ξ (Pb+Pb) = 3 fm and ξ (p+p) = 1 fm (solid lines). The width of the enhancement due to CP in the (T, μ_B) plane is based on Ref. [12] and taken as $\sigma(T) \approx 10$ MeV. A maximum of Φ_{p_T} and ω is observed for C+C and Si+Si interactions at the top SPS energy. It is two times higher for all charged than for negatively charged particles, as expected for the effect of the CP [3]. Results presented in Figs. 2 and 3 suggest that the NA49 data are consistent with CP_2 predictions.

 $^{{}^{1}}T_{chem}$ values were taken from fits of the hadron gas model [11] to particle yields.

²Predicted magnitudes include corrections by NA49 due to the limited rapidity range (forward-rapidity: $y_{\pi}^* > 1.1$) and azimuthal angle acceptance of the detector (for details see corresponding NA49 papers).

Figure 2: System size dependence of Φ_{p_T} at 158A GeV (forward rapidity, NA49 azimuthal angle acceptance) showing results from p+p, semi-central C+C (15.3%) and Si+Si (12.2%), and 5% most central Pb+Pb collisions [4]. Lines correspond to *CP*₂ predictions (see text) shifted to reproduce the Φ_{p_T} value for central Pb+Pb collisions.

Figure 3: System size dependence of ω at 158A GeV (forward rapidity, NA49 azimuthal angle acceptance) for the 1% most central p+p [6], C+C and Si+Si [10], and Pb+Pb collisions [7]. Lines correspond to CP_2 predictions (see text) shifted to reproduce the ω value for central Pb+Pb collisions.

It is expected that fluctuations due to the CP originate mainly from low p_T pions [3]. Therefore the NA49 analysis of Φ_{p_T} was performed also for two separate p_T regions (Figs. 4 and 5). Indeed, the high p_T region shows fluctuations consistent with zero (Fig. 4) and correlations are observed predominantly at low p_T (Fig. 5). However, in low p_T region, data do not show a maximum of Φ_{p_T} , but a continuous rise towards Pb+Pb collisions. The origin of this behavior is currently being analyzed (short range correlations are considered).

3. Transverse mass spectra of baryons and anti-baryons

It was suggested [13] that the critical point serves as an attractor of hydrodynamical trajectories in the (T, μ_B) phase diagram. This was conjectured to lead to a decrease of the anti-baryon to baryon (\bar{B}/B) ratio with increasing transverse momentum. The \bar{p}/p , $\bar{\Lambda}/\Lambda$, and $\bar{\Xi}^+/\Xi^-$ ratios versus reduced transverse mass $m_T - m_0$ were studied by the NA49 experiment [8] and presented at this conference. The slopes of all three \bar{B}/B ratios show no significant energy dependence, thus implying that transverse mass spectra of *B* and \bar{B} do not provide evidence for the critical point in the SPS energy range.

Figure 4: The same as Fig. 2, but for high- p_T particles ($0.5 < p_T < 1.5$ GeV/c).

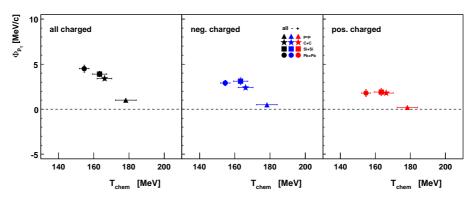


Figure 5: The same as Fig. 2, but for low- p_T particles (0.005 < p_T < 0.5 GeV/c).

4. Summary of NA49 results and strategy of NA61/SHINE

The energy dependence of average p_T and multiplicity fluctuations, and ratios of the antibaryon/baryon transverse mass spectra in central Pb+Pb collisions provide no indications of the critical point. The system size dependence at 158A GeV exhibits a maximum of mean p_T and multiplicity fluctuations in the complete p_T range (consistent with CP_2 predictions) and an increase (from p+p up to Pb+Pb) of mean p_T fluctuations in the low p_T region. The low p_T region will be carefully analyzed for the effects of short range correlations on Φ_{p_T} and ω .

A detailed energy and system-size scan is necessary to establish the existence of the critical point. Therefore the CP search will be continued by the NA61/SHINE [14] experiment which is based on the upgraded NA49 detector. We plan to perform a two-dimensional scan with lighter ions (p+p, C+C, S+S, In+In) in a broad beam energy range (10A - 158A GeV). The hypothetical chemical freeze-out points in the NA61 experiment are presented in Fig. 1.Together with existing NA49 data the scan may help to locate the QCD critical point in the (T, μ_B) phase diagram.

References

[1] Z. Fodor and S. D. Katz, *Critical point of QCD at finite T and μ, lattice results for physical quark masses, JHEP* **0404**, 050 (2004) [hep-lat/0402006].

- [2] S. Afanasiev et al. (NA49 Collab.), *The NA49 large acceptance hadron detector*, *Nucl. Instrum. Meth.* A430, 210 (1999).
- [3] M. Stephanov, K. Rajagopal, and E. V. Shuryak, *Event-by-event fluctuations in heavy ion collisions* and the QCD critical point, Phys. Rev. **D60**, 114028 (1999) [hep-ph/9903292].
- [4] T. Anticic et al. (NA49 Collab.), Transverse Momentum Fluctuations in Nuclear Collisions at 158 AGeV, Phys. Rev. C70, 034902 (2004) [hep-ex/0311009].
- [5] T. Anticic et al. (NA49 Collab.), Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV, Phys. Rev. C79, 044904 (2009) [arXiv:0810.5580].
- [6] C. Alt et al. (NA49 Collab.), *Centrality and system size dependence of multiplicity fluctuations in nuclear collisions at 158A GeV*, *Phys. Rev.* C75, 064904 (2007) [nucl-ex/0612010].
- [7] C. Alt et al. (NA49 Collab.), Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions at the CERN SPS, Phys. Rev. C78, 034914 (2008) [arXiv:0712.3216].
- [8] K. Grebieszkow et al. (NA49 Collab.), Search for the critical point of strongly interacting matter in NA49, Nucl. Phys. A830, 547C (2009) [arXiv:0907.4101].
- [9] M. Stephanov, private communication.
- [10] B. Lungwitz, PhD thesis (2008), https://edms.cern.ch/document/989055/1 (unpublished).
- [11] F. Becattini, J. Manninen, M. Gazdzicki, Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions, Phys. Rev C73, 044905 (2006) [hep-ph/0511092].
- [12] Y. Hatta and T. Ikeda, Universality, the QCD critical/tricritical point and the quark number susceptibility, Phys. Rev. D67, 014028 (2003) [hep-ph/0210284].
- [13] Askawa, et al., Transverse Velocity Dependence of the Proton-Antiproton Ratio as a Signature of the QCD Critical Point, Phys. Rev. Lett 101, 122302 (2008) [arXiv:0803.2449];
 Luo et al., Signature of QCD critical point: Anomalous transverse velocity dependence of antiproton-proton ratio, Phys. Lett. B673, 268 (2009) [arXiv:0903.0024].
- [14] https://na61.web.cern.ch/na61/xc/index.html