PROCEEDINGS OF SCIENCE

Light particle searches at Belle

Chao. Liu*

University of Science and Technology of China E-mail: liuchao@mail.ustc.edu.cn

We present analysis of new light particle searches at Belle with a data sample of $657 \times 10^6 B\bar{B}$ pairs collected with the Belle detector at the KEKB e^+e^- collider. At first, we report on a search for the X(1812) state in the decay $B^{\pm} \to K^{\pm}\omega\phi$. No significant signal is observed. An upper limit $\mathscr{B}(B^{\pm} \to K^{\pm}X(1812), X(1812) \to \omega\phi) < 3.2 \times 10^{-7}$ (90% C.L.) is determined. And also, we constrain the three-body decay branching fraction to be $\mathscr{B}(B^{\pm} \to K^{\pm}\omega\phi) < 1.9 \times 10^{-6}$ (90% C.L.). Then, we report on a search for a low mass particle with a mass of 214.3 MeV/ c^2 reported by the HyperCP experiment at Fermilab. For this search we use the following decay modes: $B^0 \to K^-\pi^+X^0, X^0 \to \mu^+\mu^-$; $B^0 \to \pi^-\pi^+X^0, X^0 \to \mu^+\mu^-$; $B^0 \to K^{*0}X^0, K^{*0} \to K^+\pi^-, X^0 \to \mu^+\mu^-$; and $B^0 \to \rho^0 X^0$, $\rho^0 \to \pi^+\pi^-, X^0 \to \mu^+\mu^-$, where X^0 is a pseudo-scalar particle with mass of 214.3 MeV/ c^2 .

European Physical Society Europhysics Conference on High Energy Physics, EPS-HEP 2009, July 16 - 22 2009 Krakow, Poland

*Speaker.

1. Data Sample and Belle Detector

The following analyzes use 605 fb⁻¹ of data containing $657 \times 10^6 B\overline{B}$ pairs. The data was collected with the Belle detector [1] at the KEKB [2] e^+e^- asymmetric-energy (3.5 GeV on 8.0 GeV) collider operating at a center-of-mass (CM) energy of the $\Upsilon(4S)$ resonance.

The Belle detector is a large-solid-angle spectrometer. It consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid that provides a 1.5 T magnetic field. An iron flux return located outside the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM).

2. Search for the X(1812) in $B^{\pm} \rightarrow K^{\pm} \omega \phi$

Using a sample of $5.8 \times 10^7 J/\psi$ events, the BES collaboration observed a near-threshold enhancement in the $\omega\phi$ invariant mass spectrum from the double OZI suppressed $J/\psi \to \gamma\omega\phi$ decay with a statistical significance of more than 10σ [3]. When fitted with a Breit-Wigner, this enhancement, called X(1812), has the property $M = (1812^{+19}_{-26} \pm 18) \text{MeV}/c^2$, $\Gamma = (105 \pm 20 \pm 28) \text{MeV}/c^2$. Many speculations have been made that the X(1812) may be a tetraquark state, hybrid [4], glueball state [5], an effect due to intermediate meson rescatterings [6] or a threshold cusp attracting a resonance [7]. Therefore, we preformed an analysis on $B^{\pm} \to K^{\pm}\omega\phi$ to search for this state. On the other hand, this decay proceeds via a $b \to s$ penguin with $s\bar{s}$ and $u\bar{u}$ popping. A similar decay mode $B^+ \to K^+\phi\phi$ is the only observed charmless $B \to VVP$ mode and has a rather large branching fraction [$(4.9^{+2.4}_{-2.2}) \times 10^{-6}$] [8, 9]. We also measure the $B^{\pm} \to K^{\pm}\omega\phi$ three-body decay to investigate decay mechanisms.

The decay cascade $B^{\pm} \to K^{\pm} \omega \phi$, $\phi \to K^+ K^-$ and $\omega \to \pi^0 \pi^+ \pi^-$ is reconstructed. We require a momentum in the laboratory frame $p_{\pi^0}^{\text{lab}} > 0.38 \text{ GeV}/c$ to suppress the wrong π^0 background. Because there are three kaons in the final state, one directly from the *B*-meson decay and the other two from the ϕ decay. To distinguish the two kinds of kaons and reduce multiple candidates, we also require kaons from the ϕ to have momenta $p_{K^{\pm}} < 1.5 \text{ GeV}/c$ in the CM frame. Finally, candidate $B^{\pm} \to K^{\pm} \omega \phi$ decays are identified using the energy difference $\Delta E \equiv E_B - E_{\text{beam}}$ and the beam-energy-constrained mass $M_{\text{bc}} \equiv \sqrt{E_{\text{beam}}^2 - p_B^2}$. We select events satisfying $|\Delta E| < 0.2 \text{ GeV}$ and 5.20 GeV/ $c^2 < M_{\text{bc}} < 5.29 \text{ GeV}/c^2$.

The dominant source of background arises from random combinations of particles in continuum $e^+e^- \rightarrow q\bar{q}$ events (q=u,d,s,c). To discriminate spherical $B\bar{B}$ events from jet-like $q\bar{q}$ events, we combine event-shape variables into a Fisher discriminant [10], and then form a likelihood ratio R_s . Further continuum background suppression is achieved using *b*-flavor tagging information. We introduce two parameters to describe the tagging information: the flavor of the tagged meson, $q(=\pm 1)$, and a flavor-tagging quality factor, r ($0\sim 1$). For signal events, q is usually consistent with the flavor opposite to that of the signal B, while it is random for continuum events. Thus, we divide events into six qrF_B bins, where F_B is the charge of the signal B: $F_B =+1$ (-1) for B^+ (B^-), and determine the optimum R_s selection criteria for each bin. This optimization preserves 57.9% of the signal while rejecting 98.6% of the continuum background. In addition to the dominant continuum background, charmed *B* decay $(b \rightarrow c)$ backgrounds are from D^0 and D_s . We use mass veto to exclude these kinds of backgrounds.

Figure 1: Left: Projection of the data (points with error bars) and fit results onto (a) M_{bc} , (b) ΔE , (c) $M_{\pi^+\pi^-\pi^0}$, (d) $M_{K^+K^-}$ with the other variables satisfying $M_{bc} \in (5.27, 5.29) \text{ GeV}/c^2$, $\Delta E \in (-0.15, 0.05) \text{ GeV}, M_{\pi^+\pi^-\pi^0} \in (-0.75, 0.81) \text{ GeV}/c^2$, $M_{K^+K^-} \in (1.00, 1.04) \text{ GeV}/c^2$: signal (dot-dashed), $q\bar{q}$ (dashed), $B\bar{B}$ (dot-dot-dot-dashed) and total (solid). **Right**: Mass spectrum in the $\omega\phi$ fit with the following components: $B^+ \to K\omega\phi$ three-body (dotted), $B\bar{B}$ (dot-dashed), $q\bar{q}$ (dashed), D^0 (dot-dot-dashed), D_s (dot-dot-dot-dashed), $B^{\pm} \to K^{\pm}X(1812)$ (long-dashed), and total(solid). The spectrum is also shown in the inset with an expanded vertical scale

We obtain the signal yield of three-body decay using a four-dimensional extended unbinned maximum likelihood fit to ΔE , M_{bc} , $M_{\pi\pi\pi}$ and M_{KK} (Figure. 1 left). Peaking behavior is observed in ΔE , M_{bc} , $M_{\pi\pi\pi}$ and M_{KK} . After taking the systematic errors into account, we give the result $\mathscr{B}(B^{\pm} \to K^{\pm}\omega\phi) = (1.15^{+0.43}_{-0.38} + 0.14) \times 10^{-6} (2.8\sigma)$, and the upper limit $\mathscr{B}(B^{\pm} \to K^{\pm}\omega\phi) < 1.9 \times 10^{-6}$. We next study the $\omega\phi$ mass spectrum (Figure. 1 right). In this analysis, we do not use aforementioned mass veto to exclude D^0 , D_s background, but fit them simultaneously. In our fitting, the mass and width of X(1812) are taken from the BES measurement and the property of D^0 and D_s is from PDG. No significant signal is observed, so we give a limit on the product branching fraction of $\mathscr{B}(B^{\pm} \to K^{\pm}X(1812), X(1812) \to \omega\phi) < 3.2 \times 10^{-7}$ (90% C.L.)

3. Search for X(214)

HyperCP experiments at Fermi lab reported an observation of three $\Sigma^+ \rightarrow p\mu^+\mu^-$ decays. Because the dimuon masses of observed events were clustered within the detector resolution of 1MeV, some person suggest that these events are two-body decay $\Sigma^+ \rightarrow pX(214)$, where X(214) maybe is sgoldstino [11] or low mass Higgs boson [12]. In Gauge Mediated SUSY Breaking (GMSB) model, the decay channels $B^0 \rightarrow K^{*0}X^0, X^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \rho^0 X^0, X^0 \rightarrow \mu^+\mu^-$ are suggested to be studied, while these decay channels are also possible to search low mass Higgs in Next-to-Minimal SUSY Standard Model (NMSSM).

The $K^{*0}(\rho^0)$ is reconstructed with $K^{*0} \to K^+\pi^-$ ($\rho^0 \to K^+\pi^-$) decay channel and required to be within $\pm 1.5\sigma$ ($\pm 1.0\sigma$) of the central value of the fitted mass distribution. ΔE and M_{bc} cuts are applied to B candidates also. According to the result of dimuon mass resolution study, we define the mass window of X(214) as 211.5 MeV~217.1 MeV. After using MC sample, luminosity of which is corresponding to 1750 fb⁻¹, to study background, we found no background events in the X mass window.

Figure 2: mass spectrum of $\mu^+\mu^-$: $B^0 \to K^{*0}X^0$ (left), $B^0 \to K^{*0}X^0$ (right). Yellow region stands for X(214) mass window

Next, we apply all the analysis process to real data, the mass spectrum of $\mu^+\mu^-$ are given in Figure 2. No event is observed in the *X* mass window. And the upper limits are given as $\mathscr{B}(B^0 \to K^{*0}X^0, K^{*0} \to K^+\pi^-, X^0 \to \mu^+\mu^-) < 2.0 \times 10^{-8}$ and $\mathscr{B}(B^0 \to \rho^0 X^0, \rho^0 \to K^+\pi^-, X^0 \to \mu^+\mu^-) < 1.5 \times 10^{-8}$. These results rule out most of allowed branch fraction for sgoldstino interpretation [13].

4. Conclusions

We presented two light particle searches based on data samples collected by the Belle detector at KEKB e^+e^- asymmetric energy collider: No X(1812) event is found and the upper limits of $\mathscr{B}(B^{\pm} \to K^{\pm}X(1812), X(1812) \to \omega\phi)$ and $\mathscr{B}(B^{\pm} \to K^{\pm}\omega\phi)$ are obtained; No X(214) event is observed and the upper limits of $\mathscr{B}(B^0 \to K^{*0}X^0, K^{*0} \to K^+\pi^-, X^0 \to \mu^+\mu^-)$ and $\mathscr{B}(B^0 \to \rho^0 X^0, \rho^0 \to K^+\pi^-, X^0 \to \mu^+\mu^-)$ are given.

References

- [1] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Meth. A 479, 117 (2002).
- [2] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. A 499, 1 (2003), and other papers included in this Volume.
- [3] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett. 96, 162002 (2006).
- [4] K. T. Chao, arXiv:hep-ph/0602190.
- [5] P. Bicudo, S. R. Cotanch, F. J. Llanes-Estrada and D. G. Robertson, Eur. Phys. J. C 52, 363 (2007)
- [6] Q. Zhao and B. S. Zou, Phys. Rev. D 74, 114025 (2006)
- [7] D. V. Bugg, J. Phys. G 35, 075005 (2008)
- [8] K. Abe et al. (Belle Collaboration), arXiv:hep-ex/0802.1547.
- [9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 261803 (2006).
- [10] S.H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
- [11] D.S. Gorbunov and V.A. Rubakov, Phys. Rev. D 73, 035002 (2006)
- [12] X.G. He, J. Tandean and G. Valencia, Phys. Rev. Lett. 98, 081802 (2007)
- [13] S. V. Demidov and D. S. Gorbunov, JETP Lett. 84, 479 (2007)