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By means of QCD simulations on the lattice, we compute the coupling of the heavy-light mesons

to a soft pion in the static heavy quark limit. The gauge field configurations used in this calcula-

tions include the effect ofN f = 2 dynamical Wilson quarks, while for the static quark propagator

we use its improved form (so called HYP). On the basis of our results we obtain that the coupling

ĝ = 0.44±0.03+0.07
−0.00, where the second error is flat (not gaussian).
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1. Introduction

Heavy Quark Effective Theory (HQET) is an effective theory which offers in its static limit (i.e.
with just the first term of the expansion in 1/mQ of the QCD Lagrangian) a simplified framework to
solve the non-perturbative dynamics of light degrees of freedom in the heavy-light systems. That
dynamics is constrained by heavy quark symmetry (HQS): it isblind to the heavy quark flavor
and its spin. As a result the total angular momentum of the light degrees of freedom becomes a
good quantum number (jP

ℓ ) and therefore the physical heavy-light mesons come in mass-degenerate
doublets.

In phenomenological applications the most interesting information involves the lowest lying
doublet, the one withjP

ℓ = (1/2)−, consisting of a pseudoscalar and a vector meson, such as (Bq,
B∗

q) or (Dq, D∗
q) states, whereq ∈ {u,d,s}. When studying any phenomenologically interesting

quantity from the QCD simulations on the lattice that includes heavy-light mesons (decay con-
stants, various form factors, bag parameters and so on), oneof the major sources of systematic
uncertainty is related to the necessity to make chiral extrapolations. Indeed simulations at the
physical point are out of reach, despite a lot of recent improvements [1]: the lightest masses used
in fully controlled simulations are in the rangemq ∼ 5−10mu/d . Since the QCD dynamics with
very light quarks is bound to be strongly affected by the effects of spontaneous chiral symmetry
breaking, a more suitable (theoretically more controllable) way to guide such extrapolations is by
using the expressions derived in heavy meson chiral perturbation theory (HMChPT), which is an
effective theory built on the combination of HQS and the spontaneous chiral symmetry breaking
[SU(N f )L ⊗SU(N f )R → SU(N f )V ]. Its Lagrangian is given by [2]

Lheavy= −traT ∇[Haiv ·DbaHb]+ ĝ traT ∇[HaHbγµAµ
baγ5] , (1.1)

Dµ
baHb = ∂ µHa −Hb

1
2
[ξ †∂µξ + ξ ∂µξ †]ba , Aab

µ =
i
2
[ξ †∂µξ −ξ ∂µξ †]ab , (1.2)

where

Ha(v) =
1+ v/

2

[

P∗ a
µ (v)γµ −Pa(v)γ5

]

, (1.3)

is the heavy meson doublet field containing the pseudoscalar, Pa(v), and the vector meson field,
P∗ a(v). In the above formulae, the indicesa,b run over the light quark flavors,ξ = exp(iΦ/ f ),
with Φ being the matrix of(N2

f −1) pseudo-Goldstone bosons, and “f " is the pion decay constant
in the chiral limit. We see that the term connecting the Goldstone boson (Aµ) with the heavy-meson
doublet [H(v)] is proportional to the coupling ˆg, which will therefore enter into every expression
related to physics of heavy-light mesons withjP

ℓ = (1/2)− when the chiral loop corrections are
included. In the rest of the proceedings we will summarise what has have been reported in [3]
concerning the computation of ˆg.

2. Extraction of ĝ by numerical simulations

Since the charm quark is not very heavy, the use of the experimentally known [4] value of
gD∗Dπ ≡ 2ĝc

√
mDmD∗
fπ

to fix the value of ˆg-coupling and its use in chiral extrapolations of the quantities
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Figure 1: Sketch of the 2-pts and 3-pts static light correlation functions. Single lines refer to light quark
propagators, double line to static quark propagators whilegrey ovals refer to smeared interpolating fields.

relevant toB-physics phenomenology may be dangerous mainly because of the potentially large
O(1/mn

c)-corrections. Unfortunately the decayB∗ → Bπ is kinematically forbidden and therefore,
to determine the size of ˆg, we have to resort to a non-perturbative approach to QCD. Unlike for
the computation of the heavy-to-light form factors, QCD sumrules proved to be inadequate when
computinggD∗Dπ , most likely because of the use of double dispersion relations when the radial
excitations should be explicitly included in the analysis,as claimed in [5]. Therefore we have
estimated ˆg from lattice simulations withN f = 2 flavours of dynamical quarks. From the definition
of the couplinggH∗Hπ

〈H(p)π(q)|H∗(p′,ελ )〉 = gH∗Hπ q · ελ , q = p′− p, (2.1)

and the expression of the matrix element〈H|Aµ |H∗〉, with Aµ = q̄γµγ5q, in terms of the form
factorsAi, i = 1,2,3

〈H(p)|Aµ |H∗(p′,ελ )〉 = 2mV A0(q
2)

q · ελ
q2 qµ +(mH + m∗

H)A1(q
2)

(

ε µ
λ − q · ελ

q2 qµ
)

+ A2(q
2)

q · ελ
mH + m∗

H

(

pµ + p′µ − m2
H∗ −M2

H

q2 qµ
)

, (2.2)

one can write that in the soft pion limit

〈H(p)|qµ Aµ |H∗(p′,ελ )〉 = gH∗Hπ
q · ελ

m2
π −q2 fπm2

π + · · · (2.3)

Finally, with~q = ~p = ~p′ = 0, 〈H|Ai|H∗(ελ )〉 = (m∗
H + mH)A1(0)ε i

λ . This kinematical situation is
physically meaningful in static limit of HQET (H andH∗ are degenerate in mass) and we conclude
that ĝ is given byA1(0).

3 lattice spacings have been considered with several sea quark masses to make chiral extrapo-
lation. We have performed our computation on publicaly available ensembles [6] -[8] whose main
characteristics are that the lattice spacing is smaller than 0.1 fm,mq ∈ [ms/4,1.5ms] and the volume
is between 1.5 and 2.5 fm. We have computed 2-pts and 3-pts correlation functionsC(2)(tx) and
C(3)(tx, ty), schematically drawn in Figure 1, from which one extracts the effective energyEq =

ln
(

C(2)(t+1)

C(2)(t)

)∣

∣

∣

t≫0
, the couplingZ = 〈0|P|H〉 andĝ =

C(3)(ty,tx)
Z 2e−Eqtx

∣

∣

∣

ty≫0,tx−ty≫0
≡ R(tx, ty)|ty≫0,tx−ty≫0.

In order to suppress more strongly the coupling with radial excitations with have used smeared
interpolating fieldsP(Vi)(~x, t) = ∑~y h̄(~x, t)Φ(~x−~y)γ5(i)q(~y, t).

All our fits to extract ˆg from R are made on the common interval, 5≤ ty ≤ 8. The final
ingredient necessary to relate the results of our calculation to the continuum limit is the appropriate
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axial current renormalization. We prefer to apply the same procedure to all our data sets and
determine non-perturbatively the axial renormalization constant from hadronic Ward identities [9].

The last step to reach the coupling ˆg, which is our final goal, is to make the extrapolation to
the chiral limit. To that end we attempt either a simple linear fit or a fit guided by the expression
derived in HMChPT [10], i.e.,

ĝq = ĝlin
(

1+ clinm2
π
)

, ĝq = ĝ0

[

1− 4ĝ2
0

(4π f )2 m2
π log(m2

π)+ c0m2
π

]

, (2.4)

where ˆg0 is then the soft pion coupling that is to be used in applying the HMChPT formulae when
extrapolating the phenomenologically interesting quantities computed on the lattice to the physical
light quark mass limit. From Figure 2 it is obvious that this task is quite difficult if one is doing
it separately for eachβ . Thus, performing a global fit of all our data, without introducing O(a2)

terms in the formula because of rather large statistical uncertainties, we obtain

ĝlin = 0.51±0.04, clin = (0.21±0.12) GeV−1 , (2.5)

while with the HMChPT formula we have

ĝ0 = 0.44±0.03, c0 = (0.40±0.12) GeV−1 . (2.6)

Another possibility is to exclude the data withm2
π ≥ 0.6 GeV2, which gives ˆg0 = 0.46±0.04. We

also checked that our resulting ˆg0 is insensitive to the variation off ∈ (120,132) MeV, latter being
f phys.
π . Our result is in good agreement with a first unquenched calculation performed on coarser

lattices (a > 0.15 fm) [11] where all to all propagator techniques have been used in order to reduce
statistical fluctuations. It is also in very good agreement with ĝ extracted from a quite different
approach based on the measurement ofB meson axial charge distribution [12].

3. Conclusions

We have reported on the results of our calculations of the soft pion coupling to the lowest
lying doublet of static heavy-light mesons. From our computations, in which we use the fully

0 0.2 0.4 0.6 0.8 1

mπ
2

0.4

0.6

0.8
gq

Set  1

Set 2

Set 3

HMChPT

linear fit

Figure 2: ĝq computed from the ratio R for all of our lattice data sets, after accounting for the axial current
renormalization constants computed on the same ensembles of gauge field configurations. They are plotted
as a function of the light pseudoscalar meson (“pion") mass squared (inGeV2).
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unquenched set-up and three different sets of gauge field configurations, all produced with Wilson
gauge and fermion actions, we obtain that ˆg0 = 0.44± 0.03+0.07

−0.00. The second error reflects the
uncertainty due to chiral extrapolation and it is the difference between the results of linear fit and
the fit in which HMChPT is used. On the more qualitative level,our results show/confirm that this
coupling is smaller in the static limit than what is obtainedwhen the heavy quark is propagating and
is of the mass equal to that of the physical charm quark, ˆgcharm= 0.68±0.07 [13]. It is intriguing
that theO(1/mn

c) corrections are quite large for the quantity in which the heavy quark contributes
only as a spectator. An obvious perspective concerning the determination of ˆg0 is to further reduce
the errors, both statistical (by using the “all-to-all" propagator technique, like in ref. [11]), and
the systematic ones, in particular those associated with chiral extrapolations and the contribution
of excited states to 3pts Green functions: for the latter onemight solve a Generalised Eigenvalue
Problem, as recently discussed forfB in [14].
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