

PoS

Hadronic decays related to γ at $B_{\!A}\!B_{\!A\!R}$

Neus LOPEZ-MARCH**

IFIC (Universitat de Valéncia - CSIC) E-mail: neus@slac.stanford.edu

> We report a search for the decays $B^- \to D^0 K^-$, $B^- \to D^{*0} K^-$, $B^- \to D^0 K^{*-}$ and $B^0 \to D^0 K^{*0}$ and their charge conjugates where the flavor of the $D^{(*)0}$ meson is ambiguous. These decays are sensitive to the CKM angle γ due to interference between the $b \to c$ and $b \to u$ amplitude contributions. The most recent *BABAR* results are discussed.

European Physical Society Europhysics Conference on High Energy Physics, EPS-HEP 2009, July 16 - 22 2009 Krakow, Poland

^{*}Speaker.

[†]On behalf of the BABAR Collaboration

1. Introduction

In the Standard Model *CP* violation is described by the presence of an irreducible phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-flavour-mixing matrix. The unitarity of the CKM matrix implies several relations among its elements. In particular, the relation $V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} = 0$ represents a triangle in the complex plane whose sides and angles can be determined by *B* meson related measurements. One of the main goal of the *B*-factories was to over-constrain the triangle improving the precision of all measurements. The angle γ is still one of the crucial measurements to be improved.

2. Why and how to measure γ from $B \rightarrow DK$ decays

The particularity of the angle $\gamma = arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$ is that it can be measured using only tree-level decays, like $B^- \rightarrow D^0 K^-$, and thus it becomes a reference measurement crucial for constraining physics beyond the Standard Model, when compared with other measurements.

The CKM angle γ in $B \to DK$ decays is obtained by exploiting the interference between the favored $B^- \to D^0 K^-$ and the suppressed $B^- \to \overline{D}^0 K^-$ amplitudes decays once the D^0 and the \overline{D}^0 is reconstructed in the same final state. The interference is proportional to $r_B cos(\delta_B - \gamma)$ for the B^- meson and $r_B cos(\delta_B + \gamma)$ for its *CP* conjugate state. The relevant parameter that gives the sensitivity to γ is r_B , defined as the ratio between the suppressed and favoured decay amplitudes, $r_B = \frac{|A(B \to \overline{D}K)|}{|A(B \to DK)|}$. Its value is $\sim 0.1(\sim 0.3)$ for charged (self-tagging neutral) *B* decays. δ_B is the strong phase (*CP*-even) and γ the weak phase (*CP*-odd). Hence, the observables are constructed using the rates of the *B* decay and its *CP*-conjugate. The parameters r_B and δ_B are also determined and thus the measurement is free from theoretical inputs.

All the measurements to date are statistically limited since the total branching fraction is of order $10^{-5}-10^{-7}$. Therefore, several final states are considered like, K^+K^- , $\pi^+\pi^-$ (*CP* eigenstates), $K\pi$ (Doubly Cabibbo-suppressed decays), multi-body final states ($D^0 \rightarrow K_S^0 \pi^+ \pi^-$ and $D^0 \rightarrow K_S^0 K^+ K^-$). Finally, they are combined to improve the overall sensitivity to γ .

3. Constraints on γ from charged $B \rightarrow DK$ decays

Three methods with different *D* decay final states are used to measure γ . The first was proposed by Gronau, London and Wyler (GLW) [1], and uses *CP*-eigenstates, such as K^+K^- , $\pi^+\pi^-$ (*CP*-even) or $K_s^0\pi^0$, $K_s^0\omega$ (*CP*-odd). The quantities to measure to extract γ are the double ratios, $R_{CP\pm} = \frac{2[\Gamma(B^- \to D_{CP\pm}^0K^-) + \Gamma(B^+ \to D_{CP\pm}^0K^+)]}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to D^0K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$ and the asymmetries, $A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0K^-) - \Gamma(B^+ \to D_{CP\pm}^0K^+)}{\Gamma(B^- \to D_{CP\pm}^0K^+)} = \pm 2r_B \sin \delta_B \sin \gamma/R_{CP\pm}$.

Combining these observables we obtain determinations of $r_B = (R_{CP\pm} + R_{CP\pm} - 2)/2$, and $x_{\pm} = (R_{CP+}(1 \mp A_{CP+}) - R_{CP-}(1 \mp A_{CP-}))/4 = r_B \cos(\delta_B \pm \gamma)$. With the actual statistics this method does not constraint γ but when r_B and x_{\pm} are combined with the Dalitz method (described later) it improves the overall precision by a few degrees.

An alternative method was proposed by Atwood, Dunietz and Soni (ADS) [2], which uses Cabibbo-favoured $D^0 \to K^-\pi^+$ and doubly-Cabibbo-suppressed $\bar{D}^0 \to K^-\pi^+$ decays. The favoured

Parameter	$B ightarrow D^0 K$	$B ightarrow D^{*0} K$	$B ightarrow DK^*$
x_{-}, x_{-}^{*}, x_{s-}	$0.090 \pm 0.043 \pm 0.015 \pm 0.011$	$-0.111 \pm 0.069 \pm 0.014 \pm 0.004$	$0.115 \pm 0.138 \pm 0.039 \pm 0.014$
y_{-}, y_{-}^{*}, y_{s-}	$0.053 \pm 0.056 \pm 0.007 \pm 0.015$	$-0.051\pm0.080\pm0.009\pm0.010$	$0.226 \pm 0.142 \pm 0.058 \pm 0.011$
x_{+}, x_{+}^{*}, x_{s+}	$-0.067\pm0.043\pm0.014\pm0.011$	$0.137 \pm 0.068 \pm 0.014 \pm 0.005$	$-0.113 \pm 0.107 \pm 0.028 \pm 0.018$
y_{+}, y_{+}^{*}, y_{s+}	$-0.015\pm0.055\pm0.006\pm0.008$	$0.080 \pm 0.102 \pm 0.010 \pm 0.012$	$0.125 \pm 0.139 \pm 0.051 \pm 0.010$

Table 1: *CP*-violating parameters x_{\pm} and y_{\pm} . The first error is statistical, the second is experimental systematic uncertainty and the third is the systematic uncertainty associated with the Dalitz model.

amplitude corresponds to the Cabbibo-suppressed *B* decay, and vice versa. Therefore, the interfering amplitudes are of the same order of magnitude and sizable *CP* asymmetries are expected. The observables to measure in this method are the fraction of the suppressed to the allowed branching ratios $R_{ADS} = \frac{\Gamma(B^- \rightarrow D[K^+\pi^-]K^-) + \Gamma(B^+ \rightarrow D[K^-\pi^+]K^+)}{\Gamma(B^- \rightarrow D[K^-\pi^+]K^-) + \Gamma(B^+ \rightarrow D[K^+\pi^-]K^+)} = r_B^2 + r_D^2 + 2r_B r_D \cos \gamma \cos(\delta_B + \delta_D)$, and the direct *CP* asymmetry $A_{ADS} = \frac{\Gamma(B^- \rightarrow D[K^+\pi^-]K^-) - \Gamma(B^+ \rightarrow D[K^-\pi^+]K^+)}{\Gamma(B^- \rightarrow D[K^+\pi^-]K^-) + \Gamma(B^+ \rightarrow D[K^-\pi^+]K^+)} = 2r_B r_D \sin \gamma \sin(\delta_B + \delta_D)/R_{ADS}$. This method is mainly sensitive to r_B .

The third method uses the Dalitz plot analysis of the D^0 decay into 3-body final states [3]. To date, it is the only method that provides a measurement of γ using a single D decay final state. The input for this method is the amplitude of the D^0 decay, $A_{D\mp}$, which is determined from a sample of $D^{*+} \rightarrow D^0 \pi^+$, where the charge of the soft π tags the D^0 flavour. The B decay rate can therefore be written as: $\Gamma_{\mp}(m_-^2, m_+^2) \propto |A_{D\mp}|^2 + r_B^2 |A_{D\pm}|^2 + 2\lambda \left[x_{\mp} \Re\{A_{D\mp}A_{D\pm}^*\} + y_{\mp} \Im\{A_{D\mp}A_{D\pm}^*\} \right]$, where we introduce the *CP* parameters $x_{\pm} = r_B \cos(\delta_B \mp \gamma)$ and $y_{\pm} = r_B \sin(\delta \mp \gamma)$, with $x_{\mp}^2 + y_{\mp}^2 = r_B^2$. The B^+ and B^- Dalitz plots are fitted separately and the Cartesian coordinates, x_{\mp} and y_{\pm} , are obtained. The observables introduced for the three methods apply also to D^{*0} and D^0K^* .

3.1 Dalitz plot method results

The most recent measurement of γ using the Dalitz method by BABAR uses 383M $B\bar{B}$ pairs [4]. The 7 reconstructed *B* channels are D^0K , $D^{*0}K$ ($D^{*0} \rightarrow D^0\gamma$ and $D^0\pi^0$) and D^0K^* , with signal yields 600(112), 133(32), 129 (21), 118, for $D^0 \rightarrow K_S^0\pi^+\pi^-(D^0 \rightarrow K_S^0K^+K^-)$ respectively. The D^0 amplitude was determined as explained above. The results for x_{\pm} and y_{\pm} (D^0K^-), x_{\pm}^* and y_{\pm}^* ($D^{*0}K$), x_s and y_s (D^0K^*) are shown in Table 1. These results are consistent and have similar precision to those obtained by Belle [5].

Using a frequentist analysis, x_{\pm} and y_{\pm} are interpreted in terms of the weak phase γ , the ratios r_B , r_B^* , r_s (equivalent to the parameter r_B but modified due to the finite width of the K^{*-} resonance) and the strong phases, δ_B , δ_B^* , δ_s , giving $\gamma(mod180^\circ) = (76 \pm 22 \pm 5 \pm 5)^\circ$, where the first error is statistical, the second is the experimental uncertainty and the third reflects the uncertainty on the *D* decay Dalitz models. For the amplitude ratios, we obtain: $r_B = (8.6 \pm 3.5)\%$, $r_B^* = (13.5 \pm 5.1)\%$, $r_s = (16.3^{+8.8}_{-10.5})\%$, $\delta_B(mod180^\circ) = (109^{+28}_{-31})^\circ$, $\delta_B^*(mod180^\circ) = (-63^{+28}_{-30})^\circ$, and $\delta_s(mod180^\circ) = (104^{+43}_{-41})^\circ$. The 1 σ and 2 σ confidence intervals for γ are shown in Fig.1. A 3 σ evidence of direct *CP* violation in $B \rightarrow DK$ decays is found combining all the channels.

3.2 GLW results

The most recent update of GLW method analyzes the K^+K^- , $\pi^+\pi^-$, $K_s^0\pi^0$ and $K_s^0\omega D^0$ decay modes, using 382M $B\bar{B}$ pairs. The *B* meson is reconstructed in D^0K [6] and also in $D^{*0}K(D^{*0} \rightarrow D^0\gamma$ and $D^0\pi^0)$ [7] final states, with signal yields 474, 168 and 261, respectively, from which

B decay	R_{CP+}	A_{CP+}	R_{CP-}	A_{CP-}
D^0K	$1.06 \pm 0.10 \pm 0.05$	$0.27 \pm 0.09 \pm 0.04$	$1.03 \pm 0.10 \pm 0.05$	$-0.09\pm0.09\pm0.02$
$D^{*0}K$	$1.31 \pm 0.13 \pm 0.04$	$-0.11 \pm 0.09 \pm 0.01$	$1.10 \pm 0.12 \pm 0.04$	$0.06 \pm 0.10 \pm 0.02$

Table 2: Results of the GLW analysis for D^0K and $D^{*0}K$ channels.

we determine the $R_{CP\pm}$ and $A_{CP\pm}$ observables. The results are summarized in Table 2. As mentioned before, these results can be expressed in terms of the parameters used in the Dalitz analysis: $x_+ = -0.09 \pm 0.05 \pm 0.02$ and $x_- = 0.10 \pm 0.05 \pm 0.03$ for D^0K and $x_+^* = 0.09 \pm 0.07 \pm 0.02$ and $x_-^* = -0.02 \pm 0.06 \pm 0.02$ for $D^{*0}K$. These results are consistent with the Dalitz measurements by *BABAR* [4] and Belle [5] and have similar precision, see Fig.1. The 1-CL as a function of γ for the combination of the Dalitz method and the GLW method for each decay chain and for all the modes combined can be seen in Fig.1.

Figure 1: The left-most plot shows the 1-CL as a function of γ for the combination of the Dalitz and GLW methods, for all the channels separately and for its combination. The two right-most plots show the results for x_{\pm} for the BABAR GLW and Dalitz analyses and for the Belle Dalitz analysis.

3.3 ADS result

BABAR has performed a new analysis of the $B \to D^{(*)0}K^-$ decays using the ADS method, using the full dataset consisting of 467M $B\bar{B}$ pairs. The final state particles for the D^0K^- and the $D^{*0}K^-$ modes are $[K^+\pi^-]K^-$ and $([K^+\pi^-]\pi^0)K^-$ or $([K^+\pi^-]\gamma)K^-$ respectively, but also the doubly Cabibbo suppressed decays $B^- \to D^{(*)0}\pi^ (D^0 \to K^+\pi^-)$ and their charge conjugates, used as a control sample. The results for the double ratios and the *CP* asymmetries are summarized in Table 3. First indications of signals for $B \to D^0K$ and $B \to D^{*0}(D^0\pi^0)K$ are observed with a statistical significance of 2.9 σ and 2.4 σ . For the $B \to D^{*0}(D^0\gamma)K$ channel no statistical significance is yet found. From these results and using as input $r_D = (5.78 \pm 0.08)\%$ [8] and $\delta_D = (202^{+11+9}_{-12-11})^{\circ}$ [9], we determine the ratios r_B and r_B^* with a frequentist approach to be $r_B = (10.9^{+4.9}_{-5.6})\%$ and $r_B^* = (11.6^{+3.3}_{-5.1})\%$, in good agreement with the BABAR and Belle Dalitz and GLW results.

4. Constraining γ using neutral $B^0 \rightarrow D^0 K^{*0}$ decays

The motivation to use neutral decays of the B meson is that larger CP asymmetries are ex-

Parameter	D^0K	$D^{*0}K(D^0\pi^0)$	$D^{*0}K(D^0\gamma)$
$R_{ADS}(\%)$	$1.36 \pm 0.55 \pm 0.27$	$1.76 \pm 0.93 \pm 0.42$	$1.3 \pm 1.4 \pm 0.7$
A _{ADS}	$-0.70\pm0.35^{+0.09}_{-0.15}$	$0.77 \pm 0.35 \pm 0.12$	$0.36 \pm 0.94^{+0.25}_{-0.41}$

Table 3: Results of the ADS analysis for D^0K and $D^{*0}K$ channels

pected. The two interfering amplitudes are color-suppressed and consequently r_s is expected to be larger, of order 0.3. BABAR has performed two analyses using different *B* and *D* decay chains.

In the $B^0 \to DK^*(892)^0$ decay the charge of the kaon produced in the $K^*(892)^0$ decaying to $K^+\pi^-$ or $K^-\pi^+$ tags the flavour of the *B* so that no time-dependent analysis is needed to disentangle decay and mixing. The D^0 modes considered are $D \to K\pi$, $D \to K\pi\pi^0$ and $D \to K\pi\pi\pi$ using a sample of 465M $B\bar{B}$ pairs [10]. Using as input the values obtained from CLEO-c for r_D and δ_D , r_s is constrained $r_s \in [0.07, 0.41]$ at 95% CL.

BABAR has also performed a Dalitz plot analysis of $D^0 \to K_S^0 \pi^+ \pi^-$ decay in $B^0 \to DK^*(892)^0$ [11]. The model used to described the D^0 amplitude is similar to the Dalitz analysis in charged *B* decays. Using a sample of 371 M $B\bar{B}$ pairs the result for γ is $(162 \pm 56)^\circ$ with $r_s < 0.55$ at 90% CL.

5. Conclusions

We reviewed the currently available determinations of the CKM phase gamma from $B \rightarrow D^{(*)}K^{(*)}$ decays performed by the BaBar collaboration. In particular, we presented a new result using the ADS method in $B^- \rightarrow D^{(*)}K^-$ decays, which provides for the first time evidence of these decays. Combining several measurements the precision of the angle γ is still about 20°, statistically limited.

References

- M. Gronau and D. London, *Phys. Lett.* B 253, 483 (1991). M. Gronau and D. Wyler, *Phys. Lett.* B 265, 172 (1991).
- [2] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997); Phys. Rev. D 63, 036005 (2001).
- [3] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).
- [4] BABAR Collaboration, B. Aubert et al., Phys. Rev. D78, 034023 (2008).
- [5] Belle Collaboration, K. Abe et al., arXiv:0803.3375 [hep-ex](2008).
- [6] BABAR Collaboration, B. Aubert et al., Phys. Rev. D77, 111102 (2008).
- [7] BABAR Collaboration, B. Aubert et al., Phys. Rev. D78, 092002 (2008).
- [8] E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007,[arXiv:0808.1297v3][hep-exp].
- [9] CLEO Collaboration, J.L. Rosner et al., Phys. Rev. Lett. 100, 221801 (2008).
- [10] BABAR Collaboration, B. Aubert et al., Phys. Rev. D79, 072003 (2008).
- [11] BABAR Collaboration, B. Aubert et al., arXiv: 0904.2112 [hep-ex] (2008).