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In extra dimensional models, a Dark Matter candidate can be present thanks to a Kaluza-Klein
parity which makes the lightest resonances stable. However, compactifications considered sofar
need the symmetry to be imposed by hand on the model: here we propose the unique orbifold in
6 dimensions where such parity arises naturally as part of the unbroken 6D Lorentz invariance.
As an example we introduce a model of universal extra dimensions where all standard model
fields propagate in the extra dimensions. The dark matter candidate is a scalar photon and its
preferred mass range lies below 300 GeV. Due to the small splitting between states in the same
Kaluza-Klein tier, discovery of the lightest tiers is challenging at the LHC.
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1. Introduction

Both cosmological and astrophysical observations confirmed that most of the matter content
of the Universe is dark and non-barionic, however the nature of such matter is still a mystery. On
the theoretical side, one hypothesis is the presence of massive weakly interacting particle (WIMP)
whose relic density could explain the dark matter abundance and also be compatible with the struc-
ture formation. Many models contain such a candidate: among others the lightest supersymmetric
particle, the lightest T-odd particle in Little Higgs models and the lightest Kaluza-Klein state in
extra dimensional models. All those models are built by extending the symmetries of the Standard
Model. However, a common feature to most of those scenarios is that the symmetry keeping the
dark matter candidate stable or long lived is not required by the model and it is added by hand: R-
parity in supersymmetric models, also ensuring the stability of the proton; T-parity in Little Higgs
models and the KK parity which constraints the physics on special points of the compact space
in extra dimensional models. Therefore, the presence of a Dark Matter candidate is not a generic
prediction of those models. On the other hand, in extra dimensions, the KK parity in the bulk is a
relic of the extended Lorentz invariance therefore is it part of a fundamental symmetry. However,
requiring a chiral spectrum for the lightest states (the standard model) introduces singular points
in the compactified space which only respect 4D Lorentz invariance and therefore break the KK
parity: it is usually reintroduced by imposing special constraints on such points [1]. This is what
happens in the compactifications considered sofar in the literature both in 5D [1] and 6D [2].

Here we show that there exist a class of compact spaces where the KK parity is indeed part
of the unbroken Lorentz invariance and therefore is an exact and unavoidable symmetry of the
model [3]. The crucial point is the absence of fixed points (singular points that are transformed into
themselves by all the symmetries of the compact space). No such case is possible in 5D, while in
6D there is a single compact space: the real projective plane [4]. The phenomenology of the model
depends on the chosen compactification, which determines the field content of each KK tier and
the one loop corrections, crucial to calculate mass splittings and decay widths.

2. KK parity

Out of the 17 orbifold compactification of 2 dimensions, only the real projective plane com-
bines the presence of chiral light fermions and the absence of fixed points [3]. The compact space
can be defined in terms of 2 symmetries of R?: a rotation by 7 and a glide

X5 ~ —X5 X5 ~ X5+ TRs
r: , g: . 2.1
X6 ~ —X¢ X6 ~ —Xg + TRg

Two translations can be defined by #; = g* and t, = (gr)? and, because r> = (g%r)? = 1 the only
possible parity assignments are £1; therefore all fields are periodic. The rotation changes sign to
all extra coordinates and this is the condition to have chiral zero modes, however it also possesses
4 fixed points: (0,0), (0,7Re), (TRs,0) and (TRs, TRe). The glide does not leave any fixed points,
and it identifies (0,0) <> (nRs,mR¢) and (0,7Rs) <> (7Rs,0). The space therefore contains two
singular points where 4 dimensional interactions can be introduced: such interactions are actually
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Figure 1: Fundamental domain for a torus (left) and real projective plane (right). The red stars indicate the singular
points.

required to regularize Ultraviolet divergencies of the theory and are therefore generated by the UV
completion of the model.

The fundamental domain of the space compared to the one of a torus is in Figure 1. It is
also invariant under a rotation by 7 around the center of the square (or equivalently a translation
by (nRs,mRe)): this symmetry is the KK parity. Note that this is the same symmetry as in the
chiral square [2] previously studied in the literature: the crucial difference is that in our case the
singular points do respect the symmetry, while on the chiral square two of the fixed points must be
identified: this is equivalent to an ad-hoc global symmetry of the UV completion of the model. In
our scenario, on the other hand, such symmetry is a fundamental symmetry of the model and cannot
be broken. A generic KK mode with momenta along the extra directions (k/Rs,!/R¢), where k and
[ are integers due to the periodicity of the fields, will pick up a phase (—1)¥*!. Note also that one
may impose a second KK parity, a translation by 7 along one of the coordinates, however this
would require the identification of the two singular points.

3. Phenomenology of the SM on the real projective plane

As a simple example, we will discuss a model where al the SM particles are allowed to propa-
gate in the extra dimensions [3]. The tree level spectrum is determined by the parity assignment of
each SM field under the two symmetries. The modes are labelled by two integers (/,k), and each

mode has a tree level mass 2 P
m gy = R—g—l-R—é, 3.1
for simplicity, in the following we will also set Rs = Rs = 1. For gauge bosons, the parities must
be (+,+) in order to have a vector zero mode to be identified with the SM gauge bosons. The
spectrum contains a scalar field in the tiers (2/+ 1,0) and (0,2k 4 1), a massive vector in the tiers
(21 +1,0) and (0,2k + 1) and both a vector and a scalar when both integers are non-zero. For the
Higgs boson, we chose also (+,+) to allow for a vacuum expectation value: in this case, the VEV
does not depend on the extra coordinates and, due to the orthonormality of the wave functions, it
does not induce mixing among tiers. The spectrum consists of a massive resonance in the levels
(21,0), (0,2k) and (/,k).
Finally, for the fermions, the parity under the rotation determines the chirality of the zero
mode: left-handed if (4-) and right handed if (—). The spectrum of the KK modes is the same: one
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Figure 2: LEFT: Mass splitting between the different states in the lightest tier as a function of the KK mass mgg: in
black the scalar photon, in blue the W and Z, in solid red the gluon, in green the leptons, in magenta the light quarks,
in dashed red the tops. RIGHT: relic abundance including two (solid blue) and one (dashed red) tiers. Both plots are
from [3].

single massive fermion in the tiers (/,0) and (0, k) and two degenerate states in each tier with both
non-zero indices. The parity under the glide does not affect the spectrum, however it determines
the couplings of the fermions: for instance, in order to write down a Yukawa coupling in the bulk
both fermions must have the same glide parity. This could be used to avoid Yukawa couplings
between leptons and quarks by assigning them different glide parities.

At three level, all the states in each tier are degenerate. There are three mechanisms that gen-
erate splittings between states in each tier: the Higgs vacuum expectation value, loop corrections
and operators localized on the singular points (kinetic terms). The Higgs VEV does not generate
mixing inter tiers: at the level (0,0), therefore, the spectrum is exactly the same as in the standard
model and no tree level corrections to precision electroweak observables are generated. In massive
tiers, the correction to the masses, both for fermions and bosons, is of the form m? = m%h X + m%,
where my is the mass of the corresponding standard model particle. Such correction therefore is
large for small KK mass (mgg is the mass of the lightest tier, all the other tree level masses are
proportional to it). In absence of other contributions, the weak mixing angle between the gauge
vectors or scalars in the tier is equal to the standard model one. Loop corrections on the other hand
respect less symmetries than the full 6D Lorentz invariance, therefore tier mixing is allowed. Nev-
ertheless, at leading order the off diagonal terms can be neglected. For a boson, the contribution IT
to the mass squared can in general be written as

I =T1I7 + pIl + pep/ Xl + p/llg, (3.2)

where p, is the parity of the field in the loop; I1r is the contribution of the torus, it is divergent, but
the divergence is eaten by the renormalization of the bulk kinetic term; Ilg and Il are the finite
contributions from the glide (where g’ = gr); finally Il is the contribution of the rotation. The lat-
ter contains a log divergence: this divergence is of geometrical origin, in fact it can be regularized
by including a counterterm on the singular points of the orbifold. Therefore, kinetic terms localized
on the singular points are required and they can in principle be as large as a one-loop contribution.
Note finally that the loop contributions to the masses are proportional to the KK mass. We com-
puted the loop contribution for the entire tier (1,0) and (0, 1) [3]: those are phenomenologically
crucial to determine the nature of the dark matter candidate and calculate the preferred mass range
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to explain the Dark Matter abundance. Finally, one can add two kinetic terms on the two singular
points. In general they do respect even less symmetries, therefore they can for instance induce a
splitting between the (1,0) and (0, 1) tiers (which would be left degenerate by Higgs and loop cor-
rections). We expect those contribution to be small as they do correspond to higher order operators
in the 6D model, and they are required at one loop only. A more detailed discussion of the splitting
structure can be found in [3]: an important point is that the loop corrections will reduce the mixing
angle in the weak gauge sector and it will become very small for large KK masses. On the left
panel of Figure 2 we plotted the total corrections to the masses in the lightest tier: the lightest state
is a neutral scalar gauge boson corresponding to the photon up to the different weak mixing angle.

As the mass splittings are small, the scattering of all the states in the lightest tier contribute
to determining the Dark Matter abundance: in fact, all states will be in thermal equilibrium and
only after freeze out they decay to the lightest state. To estimate the preferred mass range, we used
the analytical method outlined in [5] including all the main coannihilation channels: the result is
in Figure 2. The preferred mass is between 200 GeV and 300 GeV (300 =400 GeV if only one
tier contributes). This result is only an estimate as a more precise calculation is required due to
the large number of coannihilation channels, and other channels (like resonant annihilation via a
Higgs [6] or a tier (2,0) and (0,2) at loop level).

The light KK mass has an important phenomenological consequence: the resonances will be
copiously produced at the LHC and they will cascade decay to the lightest stable particle. However,
due to the small splittings, the energy available for the standard model particles in the decay is very
small (typically less than 20 GeV). Such soft particle will easily escape the detection or the trigger,
therefore the whole lightest tier will appear as missing energy. The even tiers will decay into
standard model stuff without missing energy: it is the observation of the missing energy, smoking
gun of the presence of a dark matter candidate, that is a challenge. On the other hand, it also offers
the possibility for spectacular events: for instance an odd (2,1) state can decay via a loop into a
(0,1) 4 (0,0): as the lightest tier is invisible, one can see a single charged particle plus missing
energy in the final state (as an example: Z; ) — etoe*).
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