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In technicolour (TC) theories, the electroweak (EW) symmetry is broken by chiral symmetry
breaking (}SB) in an additional strongly interacting sector, added to the standard model (SM)
without elementary Higgs sector. Quasiconformal, that is, walking technicolour (WTC) models
with matter in higher representations of the technicolour gauge group are viable candidates for
breaking the electroweak symmetry dynamically. They are not at odds with available electroweak
precision data. Here, we start with a brief introduction into dynamical electroweak symmetry
breaking by technicolour theories. Subsequently, we discuss the phase diagram of strongly in-
teracting theories in the N.-Ny-plane or, equivalently, the dg-Ny-plane, where N, stands for the
number of colours, Ny for the number of flavours, and dx for the dimension of the representation;
and how to relate said phase diagram to the task of finding candidates for quasiconformal tech-
nicolour models. Continuing from there, we select the prime candidates [among them Minimal
Walking Technicolour (MWT)] by using constraints from available electroweak precision data
like, for example, bounds on flavour changing neutral currents (FCNCs), oblique parameters and
the masses my of extra Nambu—Goldstone modes. The latter issue is also linked to the stability
of the vacuum. We discuss the features of selected candidates in more detail. Their signals can
be detected at the LHC, they feature dark matter (DM) candidates, and they are being studied
actively with lattice computations, nonperturbative S-function techniques as well as AdS/CFT
methods.

The 2009 Europhysics Conference on High Energy Physics,
July 16 - 22 2009
Krakow, Poland

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Quasiconformal technicolour

+0.5

EW T
additional leptons
QcD

» v vwYyvweov  ,
©®UYs Ye ) | ]

SM leptons quarks techniquarks 05 ) +05

Figure 1: Lhs: TC using the example of MWT. Rhs: MWT vs. oblique parameters [1, 2].

In the SM the Higgs breaks the EW symmetry while preserving gauge invariance, perturbative
renormalisability and unitarity. It is, however, as yet undiscovered and would be the first elementary
scalar. On all other occasions in which we observe a Higgs phenomenon, like in superconductivity,
the scalar dof is composite. There is no dynamical explanation for its negative mass term. As
elementary scalar its mass is not symmetry protected and is thus quadratically divergent.

A way to break the EW symmetry (dynamically) without any elementary scalars is TC [3].
In TC, the EW symmetry is broken through ¥SB in a strongly interacting, EWly charged sector
with Ny technifermions added to the SM without its Higgs sector. The gauge group is %sm x %rc.

[See Fig. 1 (hs).] For the corresponding pion decay constant we have Ny 2 =2A2,, where Ay is

ew?
the EW scale. 3 of the possibly more pions are absorbed as longitudinal dofs of the weak gauge
bosons. The mass of the composite scalar is protected by the chiral symmetry (¥S). At variance
with the SM, the unitarity of the theory is not the sole responsibility of this composite scalar.

Available EW precision data requires that the TC sector have walking dynamics to reconcile
the creation of the mass of the top quark through extended TC [3] interactions with the bounds
on FCNCs. A small matter content is demanded by the bounds on the oblique parameters [4].
Potential additional pions must be sufficiently massive to escape the direct detection limits. The
alignment of the EW gauge group in the flavour symmetry group must be stable [5].

A walking theory is one whose matter content is such that the }S breaks just before an IR
fixed point is reached. In that case, just before the S breaks, the B-function is almost zero. [See
case E in Fig. 2 (lhs).] Consequently, the coupling constant stays constant for a big range of scales,
which enhances the techniquark condensate through renormalisation effects. For constructing such
a theory we can vary the gauge group (N.), Ny, and the rep of the gauge group wrt which these
flavours transform. For SU (N, ) gauge groups and without partial gauging [6], we find [7] the lower
bounds of the conformal windows in Fig. 2 (rhs). Walking theories lie slightly below these lines.

For walking theories, the oblique S-parameter is reduced wrt its perturbative value 1278 pee =
dRNjZ. Experimental data requires it to be small, hence, using S is conservative. Accordingly,
the most favourable model is MWT [6, 8] with 2 adjoint flavours of SU (2) plus 2 leptons to avoid a
Witten anomaly. For Fig. 1 (rhs), we vary their masses between 1 and 10 m, compute the oblique
S and T parameters, and find considerable overlap with the experimental 68%-confidence ellipse.

The adjoint is a real rep and the flavour symmetry of MWT is enhanced to SU(4) — SO(4)
leading to 9 pions. The 3 technimesons are absorbed as longitudinal dofs of the weak gauge bosons
and the remaining 6 are technibaryons. Depending on the hypercharge assignment (constrained but
not fully fixed by requiring the absence of gauge anomalies), some of the latter can be electrically
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Figure 2: Lhs: Behaviour of the -function as a function of the coupling @ and of the coupling as a
function of the energy scale u, depending on the matter content of the theory, from [9]. A) Little matter;
B) perturbative Caswell-Banks—Zaks fixed point; C) actual shape due to ySB; D) realised fixed point; E)
walking case; F) loss of asymptotic freedom. Short-dashed line: critical value of the coupling for ¥ SB.
Rhs: Lower bounds of the conformal window in the dg-Ny-plane for the (from top to bottom) fundamental
(black), 2-index-antisymmetric (blue), 2-index-symmetric (red) or adjoint (green) rep of SU(N,.). White
area: TSper < 1 /2, light-gray: TSpert < 1. The Young tableaux indicate some walking theories [7].

neutral and thus, candidates for DM [10]. The EW contribution to my is typically > my [11], which
takes them outside the direct exclusion limit for technimesons. They are, however, technibaryons,
which can only be produced in pairs. The positive contribution to m2 stabilises the embedding
of the EW gauge group in the flavour symmetry group, which ensures the correct breaking of the
former. The 2 flavours of next-to-MWT transform under the [non(pseudo)real] 2-index symmetric
rep of SU(3). The corresponding basic SU(2);, x SU(2)g — SU(2)y breaking yields only the 3
longitudinal modes of the weak gauge bosons and the correct vacuum alignment is no issue.

Dynamical electroweak symmetry breaking by WTC is feasible. Bounds on FCNCs, oblique
parameters, and m; can be reconciled with the generation of SM fermion masses by walking to-
gether with techniquarks in higher reps of the TC gauge group. WTC models can be detected at the
LHC [12] and feature DM candidates [10]. WTC theories are actively investigated with nonpertur-
bative B-function techniques [9, 14], AdS/CFT methods [13] and lattice computations [15]. There
are many more candidates beyond MWT & NMWT [7] (with full or partial gauging [6]).
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