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1. Introduction

Detailed experimental studies of the neutrino oscillationrequire more precise knowledge of the
cross sections for the interaction of neutrinos with matter. The new long-baseline experiments, like
T2K [2], will able to measure neutrinos with higher than pastprecision. Therefore, the theoretical
and experimental studies of the neutrino scattering off nucleon/nucleus is of wide interest [3].

In the T2K experiment the neutrino beam energy has a peak at 0.7 GeV. For such neutrino
energies two types of interactions are mainly observed: (i)quasi-elastic (charged current (CC)
interactions) or elastic (neutral current (NC) interactions); (ii) inelastic scattering, with 1π produc-
tion. Both interactions are important for the investigation of theνµ → ντ oscillation. While the
1π0 production (by NC) is crucial for measurement ofνµ → νe oscillation1.

In this talk we focus on the 1π production induced by neutrino-nucleon interaction. Lastyears
the subject has been intensively studied theoretically [4,5], and experimentally [6].

In modern experiments the neutrino-nucleus scattering is observed. The lack of knowledge
of the axial structure of the nucleus induces, into the data analysis, the additional systematical
uncertainty, which is difficult to control. Therefore, it isstill interesting to look at the old neutrino-
deuteron scattering data in order to extract information about the neutrino-nucleon interaction.

This short talk presents some of the results of the re-analysis [1] of the old single pion pro-
duction data (the neutrino-deuteron scattering data) collected at two different bubble chamber ex-
periments, which worked at Argonne National Laboratory (ANL) [7] and Brookhaven National
Laboratory (BNL) [8].

2. Re-analysis of the bubble chamber data

The reactionνµ +d→ µ−+π+ + p+n is a subject of re-analysis. This is the simplest channel
for 1π production, because pions are produced mainly by excitation of the nucleon toP33(1232)
resonance and the nonresonant contribution seems to be negligible. However, there are theoretical
approaches which contain also the non-resonant dynamic in the description [4] of this channel.

In our analysis we assumed that the nonresonant contribution can be neglected, while the
excitation of the nucleon toP33(1232) resonance is described by the hadronic current, which is
expressed in terms of vector and axial form factors. The vector form factors are constrained by
the electroproduction data (by CVC theorem). Therefore, only the axial form factors have to be
established by the neutrino scattering data. The axial current is expressed in terms of four form
factors:CA

3 (Q2),CA
4 (Q2), CA

5 (Q2), andCA
6 (Q2). But PCAC hypothesis relatesCA

6 (Q2) with CA
5 (Q2).

Additionally, to simplify the problem, the Adler relationsare usually postulated:

CA
3 (Q2) = 0, CA

4 (Q2) = −CA
5 (Q2)/4. (2.1)

Then, onlyCA
5 axial form factor leaves to fit to the ANL and BNL data.

Since our analysis deals with two independent experimentaldata sets, to get a reasonable
global fit, the additional systematical uncertainty (normalization error) is required to take into con-
sideration2. It significantly increases thedσ/dQ2 cross section data uncertainty. In Fig. 1 the

11π0 events constitute the background for the measurement of theelectrons produced inνeA scattering.
2It is the standard statistical treatment of independent data sets, see e.g. [9].
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Figure 1: In the first figure thedσ/dQ2 cross sections computed for the ANL beam are plotted (data
were taken from [7]). The solid/dashed lines denote the cross sections reduced/not reduced by the deuteron
correction. In the second and third figure theCA

4 andCA
5 form factors are plotted. The fits (3.2) are denoted

by solid lines. The fits (2.2), computed withCA
4 = −CA

5/4, are plotted with dashed lines. The quark model
predictions from Ref. [11] are plotted with dotted lines.

total cross section error (sum of statistical, not correlated systematical, and normalization errors) is
plotted by the shadow area.

The deuteron structure correction is also taken into account (for details see [1]). It makes the
discussion more complete. The deuteron effect turned out tobe more important for the ANL data
(see Fig. 1, wheredσ/dQ2 cross sections with and without deuteron correction are plotted).

For a global fit ofCA
5 we analyze two different parametrizations (dipole and so-called Adler).

The best fit was obtained for:

CA
5 (Q2) = (1.19±0.08)

(

1+Q2/(0.94±0.03GeV)2)−2
, and (2.2)

CA
5 (Q2) = (1.14±0.08)

(

1−1.21Q2/(2+Q2)
)(

1+Q2/(1.29±0.07GeV)2)−2
.

Both fits were computed with goodness-of-fit (GoF) larger than 58%. The normalization of data
was obtained as follows: 1.08 (for ANL), and 0.98 (for BNL). The statistical quality of the fit
was positively verified by applying parameter-goodness-of-fit test (see Ref. [1]). The test showed
that the ANL and BNL data are consistent. Eventually, the form factors (2.2) were implemented
to NuWro Monte Carlo generator. It is interesting to notice that the CC1π+/CCQE cross section
ratio, computed with NuWro for MiniBooNE experiment, is in an agreement with experimental
measurements [10].

3. Validity of the Adler relations

It seems interesting to investigate the validity of the Adler relations (2.1), which were origi-
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nally obtained from the dispersion theory.
First of all, let assume that the form factorsCA

3 , CA
4 , CA

5 are independent but to reduce the
number of unknown parameters we assumed that they are parameterized as follows:

CA
i (Q2) = CA

i (0)
(

1+Q2/M2
A,i

)−2
, i = 3,4,5. (3.1)

Thus the global fit consists of six form factor parameters. For such fit the estimated values of the
parameters turned out to be strongly correlated, butCA

3 form factor appeared to be very small (of
order of 10−5) and consistent with first Adler constrain. Therefore, it isreasonable to reduce the
number of fit parameters by settingCA

3 = 0. It allows us to investigate more carefully second Adler
relation.

With CA
3 = 0 constrain the best fit is computed for:

−CA
4 (0) = 0.67±0.42, MA4 = 0.41.1

0.4 GeV CA
5 (0) = 1.17±0.13, MA5 = 0.95±0.07GeV, (3.2)

whereχ2/NDF = 23.7/26 = 0.91 and GoF =59%. The form factorsCA
4 andCA

5 are plotted in
Fig. 1. The fit (3.2) is compared with the previous one (2.2) (hereCA

4 = −CA
5/4) and quark model

predictions of Ref. [11]. One can see that obtained results (3.2) do not exclude also the second
Adler relation, however, theCA

4 form factor is characterized by large uncertainly.
Therefore, to perform more detailed analysis of axial form factors, more precise experimental

data, in a wide range of the scattering angle, is required.
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