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We present two recent results on higher-order QCD corrections to the production of vector bosons
in hadron collisions.
We discuss the resummation of logarithmic-enhanced QCD corrections at small values ofqT and
the matching procedure to consistently combine resummation with the fixed-order perturbative
result at intermediate and largeqT . We study the perturbative uncertainty of the results and we
compare our prediction with Tevatron data forZ bosons production.

Moreover we discuss a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in

QCD perturbation theory. The calculation is implemented ina parton level Monte Carlo program

which allows the user to apply arbitrary kinematical cuts onthe final-states and to compute the

corresponding distributions in the form of bin histograms.
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Higher-order QCD corrections to vector boson production

1. Transverse-momentum resummation

We are interested in the high-energy collisions of the hadronsh1 andh2 which produce a vector
bosonV (which decays into the lepton pairl1, l2) plus an arbitrary and undetected final stateX

h1 +h2 → V(M,qT)+X → l1 + l2 +X , (1.1)

whereqT andM are respectively the transverse momentum and the invariant mass of the vector
boson.

We consider the transverse-momentum distribution and we identify two different kinematical
regions. In the region whereqT ∼ mV , mV being the mass of the vector boson (mV = mW,mZ), the
QCD perturbative series is controlled by a small expansion parameter,αS(mV). In this region the
fixed-order QCD calculations, known up to next-to-leading order (i.e.O(α2

S)) [1], are theoretically
justified. In the small-qT region (qT ≪ mV), the convergence of the fixed-order perturbative expan-
sion is spoiled by the presence of powers of large logarithmic terms,αn

S lnm(m2
V/q2

T). In order to
obtain reliable predictions in such region an all order resummation of these terms is mandatory.

TheqT resummation is performed at the level of the partonic cross section, which is decom-
posed in two terms:dσ̂V/dq2

T = dσ̂V (res.)/dq2
T + dσ̂V (fin.)/dq2

T [2, 3]. The termdσ̂V (res.) con-
tains all the logarithmically enhanced contributions (at smallqT) we have to resum while the term
dσ̂V (fin.) is free of such contributions and can be evaluated at fixed order in perturbation theory.

The resummation procedure is performed in the impact-parameter space through a Fourier-
Bessel transform

dσ̂V (res.)

dq2
T

(qT ,M, ŝ,αS) = σ̂V
LO(M)

M2

ŝ

∫ ∞

0
db

b
2

J0(bqT) W
V(b,M, ŝ,αS) , (1.2)

where the impact parameterb is the conjugate variable with respect toqT , J0(x) is the 0-order Bessel
function andσ̂V

LO is the Born partonic cross section. We can now write the partonic resummed
componentW V(b,M, ŝ,αS) in the exponential form by considering itsN-moments with respect to
the variablez= M2/ŝ at fixedM

W
V

N (b,M,αS) = H
V

N (αS)×exp{GN(αS,L)} , with L = ln(Q2b2/b2
0), b0 = 2e−γE . (1.3)

We have introduced in the above formula the scaleQ∼ M ∼ mV , the so called resummation scale,
which has a role analogous to the factorization and renormalization scales: variations ofQ around
mV can be used to estimate the size of higher-order logarithmic contributions that are not explicitly
resummed in a given calculation.

The process dependent functionH V
N includes all the perturbative terms that behave as con-

stants asqT → 0. It can thus be expanded in powers ofαS = αS(µ2
R):

H
V

N (αS) =
[

1+
αS

π
H

V (1)
N

(αS

π

)2
H

V (2)
N + . . .

]

. (1.4)

The universal exponentGN resums all the terms that order-by-order inαS are logarithmically diver-
gent.

Finally the finite component has to be evaluated starting from the usual fixed-order perturbative
truncation of the partonic cross section and subtracting the expansion of the resummed part at the
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Higher-order QCD corrections to vector boson production

same perturbative order:[dσ̂V (fin.)/dq2
T ] f .o. = [dσ̂V/dq2

T ] f .o. − [dσ̂V (res.)/dq2
T ] f .o.. This matching

procedure is important to achieve uniform theoretical accuracy over theentire range of transverse
momenta.

To perform a resummation at next-to-next-to-leading logarithmic order, the knowledge of the
coefficientH V(2)

N is necessary. Since this coefficient has been computed only recently [4], here we
limit ourselves to presenting results up to next-to-leading logarithmic accuracymatched with the
leading fixed-order result (NLL+LO).

In Fig. 1 we compare our NLL+LO resummed spectrum [3] (with different values of the facto-
rization, renormalization and resummation scale) with the Tevatron D0 Run II data [5]. We find
that the scale uncertainty is about±12−15% from the region of the peak up to the intermediate
qT region (qT ∼ 20 GeV), and it is dominated by the resummation-scale uncertainty. Taking into
account the scale uncertainty, we see that the resummed curve agrees reasonably well with the
experimental points1. We expect a sensible reduction of the scale dependence once the complete
NNLL+NLO calculation is available.

Figure 1: TheqT -spectrum of the Drell-Yane+e− pairs produced inpp̄ collisions at the Tevatron Run II [5].
Theoretical results are shown at NLL+LO, including scale variations. Left side:mZ/2 ≤ µF ,µR ≤ 2 mZ ,
with the constraint 1/2≤ µF/µR ≤ 2. Right side:mZ/4≤ Q≤ mZ

2. Fully exclusive NNLO calculation

We now consider a generic observabledσ̂V for the process in Eq. 1.1. We present a compu-
tation of the next-to-next-to-leading order (NNLO) QCD radiative corrections for such observable
with arbitrary (though infrared safe) kinematical cuts on the final-state [4]. Provided the observ-
able is sufficiently inclusive over the small-qT region, resummation is not necessary and fixed-order
perturbation theory can be used.

Following Ref. [6], we observe that, at LO, the transverse momentumqT of V is exactly zero.
This means that ifqT 6= 0 the (N)NLO contributions is given by the (N)LO contribution to the
final stateV + jet(s): dσ̂V

(N)NLO|qT 6=0 = dσ̂V+jets
(N)LO . We computedσ̂V+jets

NLO by using the subtraction

1We note that in Fig. 1 the theoretical results are obtained in a pure perturbative framework, without introducing
any models of non-perturbative contributions. These contributions canbe relevant in theqT region below the peak.
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method at NLO and we treat the remaining NNLO singularities atqT = 0 by the additional subtrac-
tion of a counter-term constructed by exploiting the universality of the logarithmically-enhanced
contributions to theqT distribution (see Eq. 1.3)

dσ̂V
(N)NLO = H

V
(N)NLO⊗dσ̂V

LO +
[

dσ̂V+jets
(N)LO −dσ̂CT

(N)LO

]

, (2.1)

whereH V
(N)NLO is the process dependent coefficient function of Eq. 1.4.

We have encoded our NNLO computation in a parton level Monte Carlo eventgenerator. The
calculation includes finite-width effects, theγ −Z interference, the leptonic decay of the vector
bosons and the corresponding spin correlations2. Our numerical code is particularly suitable for
the computation of distributions in the form of bin histograms, as shown the illustrative numerical
results presented in Fig. 2.

Figure 2: Left side: transverse mass distribution forW production at the Tevatron. Right side: distributions
in pT min andpT max for theZ signal at the Tevatron.
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