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1. Introduction

The most important goal of the LHC is the search for the Higgs Boson and one of its discovery
channels is the reactionp p→ H → W+W−. The production of a pair ofW bosons constitutes
therefore an important background for Higgs production anddecay at LHC. In addition, the com-
parison of precise measurements of the production of gauge boson pairs with theoretical predic-
tions is a good test of the gauge trilinear couplings predicted by the Standard Model. The LHC
will exploit the high energy region where the W bosons can be considered as light and the main
contribution to the cross section comes from largeSudakowlogarithms [1].

2. Evolution equations for SU(N) and for the electroweak SM

In a SU(N) gauge theory in the high energy limit, where all the kinematical invariants are
of the same order and far larger than the gauge boson mass,|s| ∼ |t| ∼ |u| ≫ M2, the asymptotic
energy dependence of the amplitude is dominated bySudakovlogarithms log(Q2/M2) (Q2 = −s)
and easily studied within the evolution equations framework.

The logarithms of collinear and soft-collinear origin depend only on the properties of the
external particles and are known to factorize. They do not depend on the specific process and can
be determined studying the asymptotic behaviour of the scattering form factors depicted in Fig. 1.

Fψ =
p

Fφ =
p

FA =
p

Figure 1: Fermion/scalar scattering in an external singlet vector field and scattering of a gauge boson in an
external scalar field. The momentum of external field satisfies p2 = s= −Q2.

At leading order inM2/Q2 they are known to satisfy the following evolution equation [2]

Fi = Zi F
Born
i ,

∂Zi

∂ lnQ2 =

[

∫ Q2

M2

dx
x

γi(g
2(x))+ ζi(g

2(Q2))+ξi(g
2(M2))

]

Zi, i = ψ ,φ ,A

Zi = Zi,0(g
2(M2)) exp

{

∫ Q2

M2

dx
x

[

∫ x

M2

dx′

x′
γi(g

2(x′))+ζi(g
2(x))+ξi(g

2(M2))

]}

. (2.1)

The remaining soft logarithms (not contained inZi) depend on the process under considera-
tion. We concentrate now on 2→ 2 processes, where the incoming particles transform under the
fundamental representation of the group (as happens for processes with incoming fermions). If
Ta are the generators of the algebra, for final states in the fundamental and adjoint representation
the structure of the amplitude isAF = A1Ta×Ta +A21×1 andAA = A1TaTb +A2TbTa +A3δab1

respectively. The coefficientsA j can be seen as the components of a vector~A. Factorizing out of~A
theZi factors described above, the remaining reduced amplitude satisfies a renormalization group
like equation [3] whose solution is given by a path-ordered exponent:

~A =
4

∏
n=1

Z1/2
in

~A′,
∂~A′

∂ lnQ2 = χ(g2(Q2))~A′, ~A′= P exp

[

∫ Q2

M2

dx
x

χ(g2(x))

]

~A0(g
2(M2)), (2.2)
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wherein takes the valuesψ , φ or A depending on whether thenth external particle is a fermion, a
scalar or a vector boson andχ is the soft anomalous dimension matrix. Expanding all perturbative
functions of Eq.(2.1) and Eq.(2.2) ing2(µ2) and absorbingZi,0 in ~A0, we get:

~A(1) =
1
2

γ(1)~ABornL2 +
(

ζ (1) + ξ (1) + χ(1)
)

~ABornL+~A(1)
0 , L = log

Q2

M2

~A(2) =
1
8

[

γ(1)
]2~ABornL4 +

γ(1)

2

[

ζ (1) + ξ (1)+ χ(1)− β0

3

]

~ABornL3

+
1
2

{

[

γ(2) +
(

ζ (1)+ ξ (1)
)2−β0ζ (1) +(χ (1)

)2−β0χ(1)
]

~ABorn+~A(1)
0

}

L2 +O(L) .(2.3)

where{γ ,ζ ,ξ} = 1/2 ∑4
n=1{γin,ζin,ξin}. For the running of the coupling constant we have used

g2(x) = g2(M2) [1−g2(M2)β0 log(x/M2)]. The one-loop coefficients can be fixed by comparing
the first expression in Eq.(2.3) with the asymptotic one-loop result (see [4] for explicit values).
They are sufficient to determine throught the second equation in Eq.(2.3) the leading and next-to-
leading logarithms at two-loop level, while to compute the two-loop NNLL one needs in addition
γ(2)

i , which is also known ([5]).
In the electroweak Standard Model, which is aSU(2)L ×U(1)Y theory, the situation is com-

plicated by the mixing of the two gauge groups as a consequence of the symmetry breaking and by
the presence of two irreducible scales: the electroweak scale M ∼ MW ∼MZ ∼ MH and the infrared
scaleλ . In order to proceed without breaking gauge invariance [6],one considers in a first step the
case where the SM obeys the evolution equations of an unbroken SU(2)L ×U(1)Y theory and all
gauge bosons have the same mass (λ = M). The amplitude takes the simple formUY(M)~AL(M)

where~AL is obtained from Eq.(2.3) for the groupSU(2)L (with g2 → α/(4πs2
W)) andUY is the

hyperchargeU(1) factor. All logarithms are here of the form ln(Q2/M2). Then we move to the
(physical) case whereλ ≪ M and the infrared logarithms ln(Q2/λ 2) are described by theU(1)

QED factorUQED up to power suppressed terms inλ/M. Requiring the matching of the two regions
at M = λ leads to the result:

~A(M,λ ) = C(M) UQED U−1
QED

∣

∣

λ=M UY
~AL. (2.4)

The matching coefficientC(M) describes the effect of the neglected terms inλ/M. This strategy
has been used at NNLL level in many similar studies [4].

The chiral structure of the SM can be taken into account enlarging the basis in which the
vector~A is defined, while the mass splitting between the bosons at theelectroweak scale can be ef-
ficiently included in the parameterξ [4]. The effect of the top Yukawa coupling are also considered
following the approach described in the last reference of [4].

3. W-pair production at hadron colliders

The partonic processes relevant for the W-pair production at hadron colliders are the gluon
fusion and quark-antiquark annihilation. The contribution of the former to the total cross section is
about 5%, therefore we concentrate our analysis on the processqq̄→W+W− which is described at
leading order by the first two diagrams depicted in Fig. 2. In the high energy limit only final states
where bothW’s have the same polarization are not mass suppressed. In addition, the case where
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bothW’s are longitundinal can be reduced by means of the Goldstonetheorem to the production
of a pair of charged Goldstone bosons, reducing the study of the process to the last two diagrams
of Fig. 2. We have explicitly computed the one-loop corrections to these diagrams and fixed the

q

q̄

W−

W+

q

q̄

γ ,Z
W−

W+
high energy

limit

q

q̄

W−
T

W+
T

q

q̄

γ ,Z
φ−

φ+

Figure 2: Tree level diagrams contributing to the partonic process

one-loop coefficients of the evolution equations by which wehave determined the two-loop leading
logarithms (up to NNLL). In Fig. 3 the one- and two-loop corrections for left-handedu quarks in
the initial state are plotted showing an important contribution at NNLL which partially cancels the
NLL. The behaviour for thed quarks is similar, while the right-handed contribution is negligible.
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Figure 3: One- and two-loop corrections to the partonic cross sectionfor left-handedu quarks with energy√
ŝ= 1 TeV (δ i = dσi/dσLO , i = NLO, NNLO).

The hadronic distributions are then obtained folding the partonic cross section with the parton
distribution functions. For thepT -distribution we have:

dσ
dpT

=
1

N2
c

∑
i j

∫ 1

0
dx1

∫ 1

0
dx2 fh1,i(x1,µ2

F ) fh2, j(x2,µ2
F)θ(x1x2− τmin)

dσ̂i j

dpT

dσ̂i j

dpT
=

4pT
√

ŝ−4M2
W

√
ŝ−sτmin

[ dσ̂i j

dcosθ
+(t̂ ↔ û)

]

ŝ= x1 x2 s τmin =
4(p2

T +M2
W)

s
(3.1)
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Restricting the analysis to highpT values, the partonic process is in the range of validity of the

high energy limit. The results, plotted in Fig. 4, show that the NNLO corrections at high energies
are between 1% and 25% for transversalW’s and between−1% and 3% in the longitudinal case.
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Figure 4: HadronicpT distributions at LHC for beem energy of 14 TeV (δ i = dσi/dσLO , i = NLO, NNLO).
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