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We analyze a gauge-Higgs unification model based on a gauge theory on a six-dimensional space-

time which has anS2 extra-space. We impose a symmetry condition for a gauge field and non-

trivial boundary conditions on theS2 for each fields. We briefly review the scheme for construct-

ing a four-dimensional theory from the six-dimensional gauge theory under these conditions.

We then construct a specific model based on an SO(12) gauge theory with fermions which lie

in a 32 representation of SO(12), under the scheme. We find that this model leads a Standard-

Model(-like) gauge theory which has gauge symmetry SU(3)× SU(2)L × U(1)Y(× U(1)2) and

one generation of SM fermions, in four-dimensions. The Higgs sector of the model is also ana-

lyzed, and it is shown that the electroweak symmetry breaking and the prediction of W-boson and

Higgs-boson masses are obtained.
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1. introduction

The gauge-Higgs unification is one of the attractive approaches to the physics beyond the SM
[1, 2, 3]. In this approach, the Higgs particles originate from the extra-dimensional components
of the gauge field of a gauge theory defined on spacetime with dimensions larger than four. Thus
the Higgs sector is embraced into the gauge interactions in the higher-dimensional spacetime and
part of the fundamental properties of Higgs scalar is determined from the gauge interactions. We
consider, in this paper, gauge-Higgs unification model on six-dimensional spacetime which hasS2

extra-space with non-trivial boundary conditions of fields onS2.

2. Model

We consider a gauge-Higgs unification model based on a gauge theory as defined on the six-
dimensional spacetime with the extra-space which has the structure of two-sphereS2 [4]. We can
impose on the fields of this gauge theory the symmetry condition which identifies the gauge trans-
formation as the isometry transformation ofS2 as in the coset space dimensional reduction(CSDR)
scheme, since theS2 has the coset space structure such asS2=SU(2)/U(1). We then impose on the
gauge field the symmetry in order to carry out the dimensional reduction of the gauge sector.

The action of this theory is given by

S=
∫

dx4sinθdθdφ
(
ψ̄ iΓµDµψ + ψ̄ iΓaeα

a Dαψ − 1
4g2gMNgKLTr[FMKFNL]

)
, (2.1)

whereFMN = ∂MAN(X)− ∂NAM(X)− [AM(X),AN(X)] is the field strength,DM is the covariant
derivative including spin connection, andΓA represents the 6-dimensional Clifford algebra. We
impose on the gauge fieldAM(X) the symmetry which connects SU(2)I isometry transformation on
S2 and the gauge transformation on the fields in order to carry out dimensional reduction, and the
non-trivial boundary conditions ofS2 to restrict four-dimensional theory. The symmetry requires
that the SU(2)I coordinate transformation should be compensated by a gauge transformation. The
symmetry further leads to the following set of the symmetry condition on the fields [1, 5, 6]:

ξ β
i ∂β Aµ = ∂αWi +[Wi ,Aµ ], (2.2)

ξ β
i ∂β Aα +∂αξ β

i Aβ = ∂αWi +[Wi ,Aα ], (2.3)

whereξ α
i is the Killing vectors generating SU(2)I symmetry andWi are some fields which generate

an infitesimal gauge transformation ofG. Here indexi = 1,2,3 corresponds to that of SU(2)
generators. The LHSs of Eq (2.2,2.3) are infintesimal isometry SU(2)I transformation and the
RHSs of those are infintesimal gauge transformation. The non-trivial boundary conditions are
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defined so as to remain the action Eq (2.1) invariant, and are written as

ψ(x,π −θ ,−φ) = γ5Pψ(x,θ ,φ), (2.4)

Aµ(x,π −θ ,−φ) = PAµ(x,θ ,φ)P, (2.5)

Aθ (x,π −θ ,−φ) = −PAθ (x,θ ,φ)P, (2.6)

Aφ (x,π −θ ,−φ) = −PAφ (x,θ ,φ)P, (2.7)

ψ(x,θ ,φ +2π) = P′ψ(x,θ ,φ), (2.8)

Aµ(x,θ ,φ +2π) = P′Aµ(x,θ ,φ)P′, (2.9)

Aθ (x,θ ,φ +2π) = P′Aθ (x,θ ,φ)P′, (2.10)

Aφ (x,θ ,φ +2π) = P′Aφ (x,θ ,φ)P′, (2.11)

whereP(P′)s act on the representation space of gauge groupG and satisfyP2 = 1((P′)2 = 1); we
can take element ofP(P′) as±1. The fermion sector of four-dimensional action is obtained by
expanding fermions in normal modes ofS2 and then integratingS2 coordinate in six-dimensional
action. Thus, the fermions have massive KK modes which would be a candidate of dark matter.
Generally, the KK modes do not have massless mode because of the positive curvature ofS2. The
existence of the positive curvature is expressed as spin connection term of covariant derivative in
six-dimensional Lagrangian. We, however, can show that the fermion components satisfying the
following condition have massless mode:

−iΦ3ψ =
Σ3

2
ψ, (2.12)

since spin connection term in Eq. (Dphi) is canceled by this condition.
We then construct a model based on a gauge groupG=SO(12) and a representationF=32 of

SO(12) for fermions. Our set up is as follows.

1. We assume that U(1)I is embedded into SO(12) such as

SO(12) ⊃ SO(10)×U(1)I . (2.13)

2. The parity assignment is written in 32 dimensional spinor basis of SO(12) such as

SO(12) ⊃ SU(3)×SU(2)L ×U(1)Y ×U(1)X ×U(1)I

32= (3,2)(+−)(1,−1,1)+(3̄,2)(+−)(−1,1,−1)

+(3,1)(−−)(4,1,−1)+(3̄,1)(−−)(−4,−1,1)

+(3,1)(−+)(−2,−3,−1)+(3̄,1)(−+)(2,3,1)

+(1,2)(++)(3,−3,−1)+(1,2)(++)(−3,3,1)

+(1,1)(−−)(6,−1,1)+(1,1)(−−)(−6,1,−1)

+(1,1)(−+)(0,−5,1)+(1,1)(−+)(0,5,−1), (2.14)

where e.g.(+,−) means that the parities(P,P′) of the associated components are (even,
odd).

3. We introduce two types of left-handed Weyl fermions that belong to 32 representation of
SO(12), which have parity assignments such asψ(+P′) → γ5Pψ(+P′)(P′γ5ψ(+P′)) andψ(−P′)

→ γ5Pψ(−P′)(−P′γ5ψ(−P′)) respectively.
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3. The consequences of the model

As a result of this set up, we obtain gauge symmetry breaking by symmetry condition and
boundary condition as SO(12)⊃ SO(10)× U(1)I ⊃ SU(5)× U(1)X × U(1)I ⊃ SU(3)× SU(2)L ×
U(1)Y × U(1)X × U(1)I , SM Higgs doublet (1,2)(3,2,-2) and (1,2)(-3,-2,2), and one generation of
SM fermions{(3,2)(1,-1,1)L,(3,1)(4,1,-1)R,(3,1)(-2,-3,-1)R,(1,2)(-3,3,1)L,(1,1)(-6,1,-1)R,(1,1)(0,5,-
1)R }.

We also analyzed Higgs potential and obtain vaccume expectation value of Higgs doublet as

< φ >=
1√
2

(
0
v

)
, v =

√
4
3

1
gR

, (3.1)

and W boson massmW and Higgs massmH are given in terms of radiusR

mW = g2
v
2

=

√
2
3

1
R

, mH =
√

3gv=
√

4
1
R

. (3.2)

The ratio betweenmW andmH is predicted

mH

mW
=
√

6. (3.3)

The electroweak symmetry breaking is then realized and the Higgs mass value is predicted.

4. Summary

We analyzed a gauge theory defined on the six-dimensional spacetime which has anS2 extra-
space, with the symmetry condition and non-trivial boundary conditions and constructed the model
based on SO(12) gauge theory. We found that this model leads Standard Model like particle con-
tents in four-dimensional spacetime and prediction for the Higgs sector.
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