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1. Introduction

The unexpectedly large branching ratios for B→ Kη ′ decays were firstly reported in 1997 by
CLEO Collaboration [1]. 12 years later, three of the four B → Kη(′) decays have been measured
with high precision [2]. Besides the branching ratios, the CP violating asymmetries for B± →
K±η(′) and B0 → K0η(′) decays have been measured very recently [2, 3].

In the SM the decay B → Kη(′) is believed to proceed dominantly through gluonic penguin
processes[4] and has been evaluated by employing various methods [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15]. Although great progress have been made during the past decade, but the predictions for
Br(B → Kη ′) from both the QCD factorization (QCDF) approach [13, 16] and the perturbative
QCD (pQCD) approach [15, 17] are still smaller than the data.

Furthermore, there is a large disparity between the measured branching ratios: Br(B→Kη ′)À
Br(B→ Kη). Many efforts have been made to interpret this pattern, which include, for example,

(a) Conventional b→ sqq̄ with constructive (destructive) interference between the uū,dd̄ and
ss̄ components of η ′ (η) [4];

(b) Large intrinsic charm content of η ′ through the chain b → scc̄ → sη ′ [6] or through
b→ scc̄→ sg∗g∗→ s(η ,η ′) due to the QCD anomaly [7];

(c) The spectator hard-scattering mechanism through the anomalous coupling of gg → η ′

[8, 9, 10];

(d) A significant flavor-singlet contribution [9, 13];

(e) A strong penguin b→ sg enhanced by new physics [11, 12].

In Ref. [15], the authors calculated the branching ratios of B → Kη(′) decays by employing
the pQCD approach at leading order. They considered the large corrections from SU(3) flavor
symmetry breaking as well as the possible gluonic component of η ′ meson, but their prediction for
Br(B0 → K0η ′) ( Br(B0 → K0η) ) is much smaller ( larger) than the measured value. A sizable
gluonic content in η ′ meson may provide a large enhancement to the decay rate of B→ Kη ′. But
the calculation in Ref. [18] showed that such contribution is numerically very small and can be
neglected safely.

Besides the possible mechanisms mentioned above, we here consider a new and natural solu-
tion: the effects of the next-to-leading order (NLO) contributions in the pQCD approach. The NLO
contributions considered here include: QCD vertex corrections, the quark-loops and the chromo-
magnetic penguins. We expect that they are the major part of the full NLO contributions in pQCD
approach [19].

In the pQCD approach, the decay amplitude is separated into soft (ΦMi), hard ( H(ki, t) ), and
harder( C(MW ) ) dynamics characterized by different energy scales (ΛQCD, t,mb,MW ) [17]. The
decay amplitude A (B→M2M3) can be written conceptually as the convolution,

A (B→M2M3)∼
∫

d4k1d4k2d4k3 Tr [C(t)ΦB(k1)ΦM2(k2)ΦM3(k3)H(k1,k2,k3, t)] , (1.1)

where ki’s are momenta of light quarks included in each meson, and Tr denotes the trace over Dirac
and color indices. C(t) is the Wilson coefficient evaluated at scale t. The hard kernel H(k1,k2,k3, t)
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describes the hard dynamics, and therefore can be perturbatively calculated. The function ΦMi is
the wave function.

Since the b quark inside the B meson is rather heavy, we consider the B meson at rest for
simplicity. It is then convenient to use light-cone coordinate (p+, p−,pT) to describe the meson’s
momenta: p± = (p0± p3)/

√
2 and pT = (p1, p2) .

For the studied B → Kη(′) decays, the weak effective Hamiltonian He f f for b → s transition
can be written as [20]

He f f =
GF√

2 ∑
q=u,c

VqbV ∗
qs

{
[
C1(µ)Oq

1(µ)+C2(µ)Oq
2(µ)

]
+

10

∑
i=3

Ci(µ) Oi(µ)

}
. (1.2)

where GF = 1.16639×10−5GeV−2 is the Fermi constant, and Vi j is the CKM matrix element, Ci(µ)
are the Wilson coefficients evaluated at the renormalization scale µ and Oi(µ) are the four-fermion
operators.

In PQCD approach, the energy scale “t” is chosen as the largest energy scale in the hard kernel
H(xi,bi, t) of a given Feynman diagram, in order to suppress the higher order corrections and
improve the reliability of the perturbative calculation. Here, the scale “t” may be larger or smaller
than the mb scale. In the range of t < mb or t ≥ mb, the number of active quarks is N f = 4 or
N f = 5, respectively. The explicit expressions of the LO and NLO Ci(mW ) can be found easily, for
example, in Refs. [21, 20]. For the expressions of the wave functions of B meson and the relevant
distribution functions of the K and (η ,η ′) mesons, one can see Ref. [21, 22]. The Gegenbauer
moments are the following [23]:

aK
1 = 0.2, aK

2 = 0.25, aK
4 =−0.015. (1.3)

The values of other parameters are η3 = 0.015 and ω =−3.0.
For the mixing of the η −η ′ system, we use the the quark-flavor mixing scheme, where the

physical states η and η ′ are related to the flavor states ηq = (uū + dd̄)/
√

2 and ηs = ss̄ through a
single mixing angle φ ,

(
η
η ′

)
=

(
cosφ −sinφ
sinφ cosφ

)(
ηq

ηs

)
=

(
F1(φ)(uū+dd̄)+F2(φ) ss̄
F ′1(φ)(uū+dd̄)+F ′2(φ) ss̄

)
(1.4)

with F1(φ) = cosφ/
√

2, F2(φ) = −sinφ , F ′1(φ) = sinφ/
√

2 and F ′2(φ) = cosφ . The distribution
amplitudes φ A,P,T

ηq represent the axial vector, pseudoscalar and tensor component of the wave func-
tion respectively [23], and can be found in Ref.[22].

2. Decay amplitudes at leading order

At the leading order in pQCD approach, the Feynman diagrams as shown in Fig. 1 may con-
tribute to B → Kη(′) decays. From the factorizable emission diagrams 1(a) and 1(b), the corre-
sponding form factors can be extracted by perturbative calculation. For Fig.1(a) and 1(b) with the
B → K transition, the operators O1,2, O3,4 and O9,10 are (V −A)(V −A) currents, the sum of the
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B

η(′)(K)

K(η(′))

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Feynman diagrams which may contribute to the B→ Kη(′) decays at leading order.

individual amplitudes is given as

FeK =
8√
2

πGFCFm4
B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2 φB(x1,b1)

×{[
(1+ x2)φ A

K (x̄2)+(1−2x2)rK(φ P
K (x̄2)−φ T

K (x̄2))
] ·Ee(ta)he(x1,x2,b1,b2)

+2rKφ P
K (x̄2) ·Ee(t ′a)he(x2,x1,b2,b1)

}
, (2.1)

where rK = mK
0 /mB with mK

0 is the chiral scale; CF = 4/3 is a color factor, and x̄2 = 1− x2. The
evolution function Ee(t) and hard function he can be found in Ref. [22]. Also from diagrams 1(a)
and 1(b), the decay amplitudes corresponding to the (V −A)(V +A) and/or (S−P)(S+P) currents
are the following

FP1
eK = −FeK , (2.2)

FP2
eK =

16√
2

πGFCFm4
B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2 φB(x1)

×{
rη

[
φ A

K (x̄2)+ rK((2+ x2)φ P
K (x̄2)+ x2φ T

K (x̄2))
] ·Ee(ta)he(x1,x2,b1,b2)

+2rKrηφ P
K (x̄2) ·Ee(t ′a)he(x2,x1,b2,b1)

}
. (2.3)

From Fig. 1, one can find the corresponding decay amplitudes: (MeK ,MP1,P2
eK ) (1(c) and 1(d)),

(MaK ,MP1,P2
aK ) (1(e) and 1(f)) and (FaK ,FP1,P2

aK ) (1(g) and 1(h)) [22]. By exchanging position of
the K and η(′) in Fig. 1, one can find the corresponding decay amplitudes for the new diagrams
easily[22]: (Feη ,FP1,P2

eη ), (Meη ,MP1,P2
eη ), (Maη ,MP1,P2

aη ), and (Faη ,FP1,P2
aη ).

For the two B→ Kη decays, the total decay amplitude with the inclusion of the corresponding
Wilson coefficients can be finally written as

M (K0η) = < K0η |He f f |B0 >= FeK

{[
ξua2−ξt

(
2a3−2a5− 1

2
a7 +

1
2

a9

)]
f q
η

−ξt

(
a3 +a4−a5 +

1
2

a7− 1
2

a9− 1
2

a10

)
f s
η

}
−Feηξt

(
a4− 1

2
a10

)
fKF1(φ)

−
[
FP2

eK f s
η +FP2

eη fKF1(φ)
]

ξt

(
a6− 1

2
a8

)
− [FakF2(φ)+FaηF1(φ)] ξt

(
a4− 1

2
a10

)

+
[
FP2

aKF2(φ)+FP2
aηF1(φ)

]
ξt

(
a6− 1

2
a8

)
fB

4
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+MeK

{[
ξuC2−ξt ·

(
2C4 +

1
2

C10

)]
F1(φ)−ξt

(
C3 +C4− 1

2
C9− 1

2
C10

)
F2(φ)

}

−Meηξt

(
C3− 1

2
C9

)
F1(φ)− [

MP1
eK F2(φ)+MP1

eη F1(φ)
]

ξt

(
C5− 1

2
C7

)

−MP2
eKξt

[(
2C6 +

1
2

C8

)
F1(φ)+(C6− 1

2
C8)F2(φ)

]
, (2.4)

M (K+η) = < K+η |He f f |B0 >= FeK

{[
ξua2−ξt

(
2a3−2a5− 1

2
a7 +

1
2

a9

)]
f q
η

−ξt

(
a3 +a4−a5 +

1
2

a7− 1
2

a9− 1
2

a10

)
f s
η

}
+{FeηF1(φ) fK +[FaηF1(φ)

+FaKF2(φ)] fB}ξua1− [FeηF1(φ) fK +(FaηF1(φ)+FaKF2(φ)) fB]ξt (a4 +a10)

−[
FP2

eη F1(φ) fK +
(
FP2

aη F1(φ)+FP2
aK F2(φ)

)
fB

]
ξt (a6 +a8)−FP2

eK f s
ηξt

(
a6− 1

2
a8

)

−MP1
eK ξt

(
C5− 1

2
C7

)
+MeK

{[
ξuC2−ξt

(
2C4 +

1
2

C10

)]
F1(φ)

−ξt

(
C3 +C4− 1

2
C9− 1

2
C10

)
F2(φ)

}
− [

MP1
aKF2(φ)+

(
MP1

eη +MP1
aη

)
F1(φ)

]

×ξt(C5 +C7)+ [MaKF2(φ)+(Meη +Maη)F1(φ)] [ξuC1−ξt (C3 +C9)]

−MP2
eK ξt

[(
2C6 +

1
2

C8

)
F1(φ)+

(
C6− 1

2
C8

)
F2(φ)

]
. (2.5)

where ξu = V ∗
ubVus, ξt = V ∗

tbVts, the coefficients ai are the combinations of the Wilson coefficients
Ci, and have been defined as usual

a1,2 = C2,1 +
C1,2

3
; ai = Ci +

Ci+1

3
, i = 3,5,7,9; ai = Ci +

Ci−1

3
, i = 4,6,8,10. (2.6)

The total decay amplitudes for the two B→ Kη ′ decays can be obtained easily from Eqs.(2.4) and
(2.5) by the following replacements

f d
η → f d

η ′ , f s
η → f s

η ′ , F1(φ)→ F ′1(φ), F2(φ)→ F ′2(φ). (2.7)

3. NLO contributions in pQCD approach

At the NLO level, the following changes or contributions should be considered:

• The NLO Wilson coefficients Ci(mW ), the NLO RG evolution matrix and the αs(t) at two-
loop level should be used.

• The NLO hard kernel H(1)(α2
s ) should be included. All the Feynman diagrams, which may

contribute to the hard kernel H at the order of α2
s , as illustrated by Figs. 2-5, should be

considered.

At present, the calculations for the vertex corrections, the quark-loops and chromo-magnetic
penguins, in relevant with B→ Kη(′) decays as shown in Fig. 2, have been done in Ref. [22]. For

5
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B

(a) (b) (c) (d)

B

b̄

(e)

l

(f)

l′

O8g

(g)

O8g

(h)

Figure 2: The Feynman diagrams in relevant with the NLO vertex QCD corrections, the quark-loops and
charomo-magnetic penguins for B→ Kη(′) decays.

B

(a) (b) (c) (d)

Figure 3: The typical vertex Feynman diagrams which contribute to the form factors at the NLO level.

B

Figure 4: The typical hard spectator Feynman diagrams which contribute at the NLO level.

B B B B

Figure 5: The typical annihilation Feynman diagrams which contribute at the NLO level.

the Feynman diagrams as shown in Figs. 3-5, however, the analytical calculations have not been
completed yet.

The vertex corrections to the factorizable emission diagrams, as illustrated by Figs. 2a-2d,
have been calculated years ago in the QCD factorization appeoach[16, 13, 14]. The difference
of the calculations induced by considering or not considering the parton transverse momentum is
rather small [19], say less than 10%, and therefore can be neglected. The vertex corrections can
then be absorbed into the re-definition of the Wilson coefficients ai(µ) by adding a vertex-function
Vi(M) to them[14, 19].

The contribution from the so-called “quark-loops" is a kind of penguin correction with the four
quark operators insertion, as illustrated by Fig. 2e-2f. For the b → s transition, the contributions
from the various quark loops are given by:

H(ql)
e f f = − ∑

q=u,c,t
∑
q′

GF√
2

VqbV ∗
qs

αs(µ)
2π

Cq(µ, l2)
(
s̄γρ (1− γ5)T ab

)(
q̄′γρT aq′

)
, (3.1)

6
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It is straightforward to calculate the decay amplitude for Fig.2e and 2f. We found two kinds of
topological decay amplitudes [22]: M(q)

Kηs
for B→ K transition and M(q)

ηqK for B→ η transition. For
B→ Kη ′ decays, we found the similar decay amplitudes. Finally, the total “quark-loop" contribu-
tion to the considered B→ Kη(′) (K = K0,K+) decays can be written as [22]

M(ql)
Kη = < Kη |H ql

e f f |B >=
GF√

2 ∑
q=u,c,t

λq

[
M(q)

Kηs
F2(φ)+M(q)

ηqK F1(φ)
]
, (3.2)

M(ql)
Kη ′ = < Kη ′|H (ql)

e f f |B >=
GF√

2 ∑
q=u,c,t

λq

[
M(q)

Kηs
F ′2(φ)+M(q)

ηqK F ′1(φ)
]
. (3.3)

For the magnetic penguins, the corresponding weak effective Hamiltonian contains the b→ sg
transition,

Hcmp
e f f = −GF√

2
VtbV ∗

ts Ce f f
8g O8g, (3.4)

with the chromo-magnetic penguin operator,

O8g =
gs

8π2 mb d̄i σ µν (1+ γ5) T a
i j Ga

µν b j, (3.5)

where i, j being the color indices of quarks. The corresponding effective Wilson coefficient Ce f f
8g =

C8g +C5.
The decay amplitudes, M(g)

Kηs
and M(g)

ηqK , have been obtained by evaluating the Feynman di-
agrams Figs.2g and 2h [22]. The total chromo-magnetic penguin contribution to the considered
B→ Kη(′) (K = K0,K+) decays can be written as

M(cmp)
Kη = < Kη |H cmp

e f f |B >=−GF√
2

λt

[
M(g)

Kηs
F2(φ)+M(g)

ηqK F1(φ)
]
, (3.6)

M(cmp)
Kη ′ = < Kη ′|H cmp

e f f |B >=−GF√
2

λt

[
M(g)

Kηs
F ′2(φ)+M(g)

ηqK F ′1(φ)
]
. (3.7)

4. Numerical Results and Discussions

We use the following input parameters [2, 24] in the numerical calculations

fB = 0.21GeV, fK = 0.16GeV, mη = 547.5MeV, mη ′ = 957.8MeV,

mK = 0.49GeV, m0K = 1.7GeV, MB = 5.279GeV,mb = 4.8GeV,

MW = 80.41GeV, τB0 = 1.527ps, τB+ = 1.643ps. (4.1)

For the CKM quark-mixing matrix elements, we use the values as given in Ref.[2, 24]:

Vud = 0.9745, Vus = λ = 0.2200, |Vub|= 4.31×10−3, Vcd =−0.224,

Vcd = 0.996, Vcb = 0.0413, |Vtd |= 7.4×10−3, Vts =−0.042, Vtb = 0.9991, (4.2)

with the CKM angles β = 21.6◦, γ = 60◦±20◦ and α = 100◦±20◦.
Using the wave functions and the input parameters as specified in previous sections, it is

straightforward to calculate the CP-averaged branching ratios for the considered four B → Kη(′)

7
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Table 1: The pQCD predictions for the branching ratios (in unit of 10−6). The label LONLOWC means the
LO results with the NLO Wilson coefficients, and +VC, +QL, +MP, NLO means the inclusion of the vertex
corrections, the quark loops, the magnetic penguin, and all the considered NLO corrections, respectively.

Mode LO LONLOWC +VC +QL +MP NLO Data QCDF
B+ → K+η 4.7 4.7 4.3 4.9 3.1 3.2+3.2

−1.8 2.6±0.6 1.9+3.0
−1.9

B+ → K+η ′ 30.2 46.8 74.6 48.1 30.2 51.0+18.0
−10.9 70.5±3.5 49.1+45.2

−23.6
B0 → K0η 3.2 3.4 3.1 3.8 2.3 2.1+2.6

−1.5 < 2.0 1.1+2.4
−1.5

B0 → K0η ′ 31.3 46.5 69.7 48.5 20.7 50.3+16.8
−10.6 68±4 46.5+41.9

−22.0

decays, which are listed in Table 1. For comparison, we also list the corresponding updated ex-
perimental results [2] and numerical results evaluated in the framework of the QCDF approach
[14].

It is worth stressing that the theoretical predictions in the pQCD approach have relatively
large theoretical errors induced by the still large uncertainties of many input parameters, such as
quark masses(mu,d ,ms), chiral scales (m0K ,mq

0,m
s
0), Gegenbauer coefficients (a(K,η)

i , · · ·), ωb and
the CKM angles (α,γ), etc. From the numerical results about the branching ratios, one can see that

• The LO pQCD predictions for branching ratios are much smaller (larger ) than the measured
values for B→ Kη ′ (B→ Kη) decays, show the same tendency as found in Ref. [15].

• The NLO contributions can interfere constructively (destructively) with the corresponding
LO parst for B→ Kη ′ ( B→ Kη) decays. For B0 → K0η ′ and B+ → K+η ′ decays, the NLO
contributions provide a 70% enhancement to their branching ratios . For B0 → K0η and
B+ → K+η decays, on the other hand, the NLO contributions give rise to a 30% reduction to
their branching ratios and result in the good agreement between the pQCD predictions and
the data.

• The NLO pQCD predictions for branching ratios Br(B → Kη(′)) agree very well with the
measured values within one standard deviation. The NLO contributions play an important
role in understanding the observed pattern of branching ratios of the four B→ Kη(′) decays.

It is easy to calculate the direct CP-violating asymmetries for the considered decays, which are
listed in Table 2. As a comparison, we also list currently available data [2] and the corresponding
QCDF predictions [14]. As to the CP-violating asymmetries for the neutral decays B0 → K0η(′),
one can see the numerical results and discussions as given in Ref.[22].

In short, we calculated the branching ratios and CP-violating asymmetries of B+ → K+η(′)

and B0 → K0η(′) decays in the pQCD approach. The partial NLO contributions considered here
include: QCD vertex corrections, the quark-loops and the chromo-magnetic penguins.

From our calculations and phenomenological analysis, we found the following results:

(a) The NLO contributions in the pQCD approach can provide a 70% enhancement to Br(B→
Kη ′), but a 30% reduction to Br(B → Kη). The large branching ratio of B → Kη ′ decays,
as well as the large disparity Br(B → Kη ′) À Br(B → Kη) can therefore be understood
naturally.

8
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Table 2: The pQCD predictions for the direct CP asymmetries in the NDR scheme (in units of 10−2), the
QCDF predictions [14] and the world average as given by HFAG [2].

Mode LO +VC +QL +MP NLO Data QCDF
A dir

CP (B±→ K±η) 9.3 31.1 7.8 7.6 −11.7 −27±9 −18.9+29.0
−30.0

A dir
CP (B±→ K±η ′) −10.1 −10.6 −5.9 −10.4 −6.2 1.6±1.9 −9.0+10.6

−16.2

(b) The pQCD predictions for the CP asymmetries of B→ Kη(′) decays are consistent with
currently available data.

(c) One should note that Only the partial NLO contributions in the pQCD approach have been
taken into account here. To achieve a complete NLO calculations in the pQCD approach, of
course, the still missing pieces should be evaluated as soon as possible.
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