

Isospin-breaking corrections to the pion-nucleon scattering lengths

Martin Hoferichter*

Helmholtz—Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany E-mail: hoferichter@hiskp.uni-bonn.de

Bastian Kubis

Helmholtz—Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany E-mail: kubis@hiskp.uni-bonn.de

Ulf-G. Meißner

Helmholtz–Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany and

Institut für Kernphysik (Theorie), Institute for Advanced Simulation, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany E-mail: meissner@hiskp.uni-bonn.de

We analyze isospin breaking through quark mass differences and virtual photons in the pion–nucleon scattering lengths in all physical channels in the framework of covariant baryon chiral perturbation theory. The so-called triangle relation is found to be violated by about 1.5 %. We encounter a substantial isospin-breaking correction to neutral-pion–nucleon scattering beyond Weinberg's prediction due to a cusp effect. Finally, the application to hadronic atoms is briefly discussed.

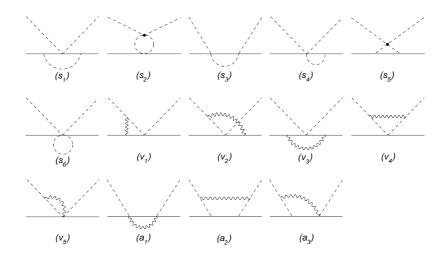
6th International Workshop on	Chiral Dynamics
July 6-10 2009	
Bern, Switzerland	

*Speaker.

1. Introduction

Isospin violation in the Standard Model is driven by strong and electromagnetic interactions, that is by the differences in the light quark masses and charges, respectively. Already in [1] Weinberg stressed that the pion-nucleon scattering lengths offer a particularly good testing ground for strong isospin violation, predicting e.g. a large effect in the difference of the neutral-pion-nucleon scattering lengths $a_{\pi^0 p} - a_{\pi^0 n}$. Isospin violation in πN scattering was addressed in the framework of heavy-baryon chiral perturbation theory (ChPT) in a series of papers about a decade ago [2-6]. Recently, new interest arose in high-precision calculations of the pion–nucleon scattering lengths. First, corrections for isospin violation are an essential ingredient to extract the isoscalar and isovector πN scattering lengths a^+ and a^- from pionic hydrogen (πH) and deuterium (πD) measurements to high precision. The isospin-breaking corrections to $a_{\pi^- p \to \pi^- p}$ needed for the ground state of πH were calculated in [7] at third chiral order. A consistent description requires the knowledge of $a_{\pi^- p \to \pi^0 n}$ (width of πH) and $a_{\pi^- n \to \pi^- n}$ (ground state of πD) at the same accuracy. In the analysis of πD isospin violation is particularly important, since the πd scattering length at leading order is proportional to the small isoscalar scattering length a^+ and therefore chirally suppressed [8]. Second, threshold pion photoproduction offers the unique possibility of measuring the so far undetermined $\pi^0 p$ scattering length and gives access to the charge exchange scattering length $a_{\pi^+ n \to \pi^0 p}$ [9, 10]. Such measurements are becoming feasible at HI₂S and at MAMI. In view of these developments, we have extended the work of [7] to all charge channels in pion-nucleon scattering in [11].

2. Formalism


The calculation of the scattering lengths is performed at $\mathcal{O}(p^3)$ in manifestly covariant baryon ChPT [12] and at first order in the isospin-breaking parameter $\delta = \mathcal{O}(e^2, m_{\rm d} - m_{\rm u})$, using the effective Lagrangian for nucleons, pions, and virtual photons, as constructed in [7]. We denote the masses of proton, neutron, charged and neutral pion by $m_{\rm p}$, $m_{\rm n}$, M_{π} , and M_{π^0} , respectively, and define the isospin limit by the charged particles. The mass differences are expressed by $\Delta_{\pi} = M_{\pi}^2 - M_{\pi^0}^2$ and $\Delta_{\rm N} = m_{\rm n} - m_{\rm p}$.

The one-loop topologies are depicted in Fig. 1. As soon as we take into account virtual photons, we have to specify how to deal with the threshold divergences: first of all, we subtract all one-photon-reducible diagrams, since they diverge $\sim 1/t$ (s and t are the usual Mandelstam variables), and denote the resulting amplitude by \tilde{T} . The additional divergences due to photon loops may be regularized in the form

$$e^{iQ\alpha\theta_{\mathcal{C}}(|\mathbf{p}|)}\tilde{T}\Big|_{|\mathbf{p}|\to 0} = \frac{\beta_{1}}{|\mathbf{p}|} + \beta_{2}\log\frac{|\mathbf{p}|}{\mu_{c}} + T_{\text{thr}} + \mathcal{O}(|\mathbf{p}|), \tag{2.1}$$

where **p** denotes the center-of-mass momentum, $\alpha = e^2/4\pi$ the fine structure constant, $\theta_{\rm C}(|{\bf p}|)$ the infrared divergent Coulomb phase given by

$$\theta_{\rm C}(|\mathbf{p}|) = -\frac{\mu_{\rm c}}{|\mathbf{p}|} \log \frac{m_{\gamma}}{2|\mathbf{p}|}, \tag{2.2}$$

Figure 1: One-loop topologies for πN scattering at threshold. Solid, dashed, and wiggly lines, denote nucleons, pions, and photons, respectively. Crossed diagrams and diagrams contributing via wave function renormalization only are not shown.

 $\mu_{\rm c} = m_{\rm p} M_{\pi}/(m_{\rm p} + M_{\pi})$ the reduced mass of the incoming particles, and Q accounts for the charges of the particles involved. The term $\propto 1/|\mathbf{p}|$ referred to as Coulomb pole is solely generated by (ν_1) at this order, while β_2 only enters at two-loop level. The scattering lengths are finally given by

$$a = \frac{T_{\text{thr}}}{8\pi\sqrt{s}}. (2.3)$$

It turns out that for the charged-pion elastic channels the triangle graph (s_5) yields a very large contribution. In addition, (s_3) can generate cusp effects, which are proportional to $\sqrt{\delta}$ and thus enhanced by $\sqrt{\delta}$. For the analytical results and more details of the calculation we refer to [11].

3. Numerical results

In the isospin limit, the πN scattering lengths are solely determined by a^+ and a^- . Subtracting these contributions, we obtain the following isospin-breaking shifts (in units of $10^{-3} M_{\pi}^{-1}$):

isospin limit	channel	shift	channel	shift
$\overline{a^+ + a^-}$	$\pi^- p o \pi^- p$	$-3.4^{+4.3}_{-6.5} + 5.0i$	$\pi^+ n o \pi^+ n$	$-4.3^{+4.3}_{-6.5} + 6.0i$
$a^{+} - a^{-}$	$\pi^+ p o \pi^+ p$	$-5.3^{+4.3}_{-6.5}$	$\pi^- n \to \pi^- n$	$-6.2^{+4.3}_{-6.5}$
$-\sqrt{2}a^{-}$	$\pi^- p \rightarrow \pi^0 n$	0.4 ± 0.9	$\pi^+ n \to \pi^0 p$	2.3 ± 0.9
a^+	$\pi^0 p ightarrow \pi^0 p$	-5.2 ± 0.2	$\pi^0 n o \pi^0 n$	-1.8 ± 0.2

The precise values of the low-energy constants as well as a detailed estimate of the theoretical uncertainties can be found in [11]. Our result for the triangle relation, which vanishes in the isospin limit and is thus a convenient way to quantify isospin violation in terms of measurable quantities, reads

$$R = 2 \frac{a_{\pi^+ p \to \pi^+ p} - a_{\pi^- p \to \pi^- p} - \sqrt{2} a_{\pi^- p \to \pi^0 n}}{a_{\pi^+ p \to \pi^+ p} - a_{\pi^- p \to \pi^- p} + \sqrt{2} a_{\pi^- p \to \pi^0 n}} = (1.5 \pm 1.1) \%.$$
(3.1)

The difference between the elastic neutral-pion-nucleon scattering lengths is found to be

$$a_{\pi^{0}p} - a_{\pi^{0}n} = \frac{m_{\rm p}}{4\pi(m_{\rm p} + M_{\pi})} \left\{ \frac{4c_{5}B(m_{\rm d} - m_{\rm u})}{F_{\pi}^{2}} - \frac{M_{\pi}^{2}}{8\pi F_{\pi}^{4}} \left(\sqrt{\Delta_{\pi} + 2M_{\pi}\Delta_{\rm N}} - \sqrt{\Delta_{\pi} - 2M_{\pi}\Delta_{\rm N}} \right) \right\}$$
$$= \left((-2.3 \pm 0.4) - 1.1 \right) \cdot 10^{-3} M_{\pi}^{-1} = (-3.4 \pm 0.4) \cdot 10^{-3} M_{\pi}^{-1}. \tag{3.2}$$

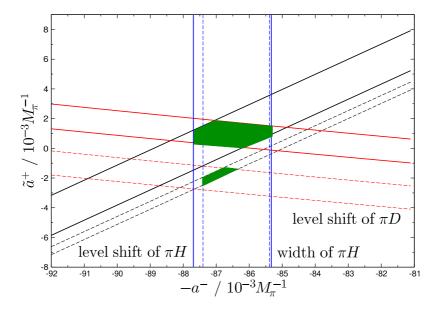
The first term was already given by Weinberg in [1], while the second one is due to a cusp effect and contributes roughly one third to the final result.

4. Application to hadronic atoms

 a^+ and a^- can be related to the strong shift of the ground state of πH and πD and to the width of πH via Deser-type formulae [13–16], to which isospin-breaking corrections are an essential ingredient. The impact of our isospin-breaking corrections on the extraction of a^- and

$$\tilde{a}^{+} = a^{+} + \frac{m_{\rm p}}{4\pi(m_{\rm p} + M_{\pi})} \left\{ \frac{4\Delta_{\pi}}{F_{\pi}^{2}} c_{1} - 2e^{2} f_{1} \right\}$$
(4.1)

is displayed in Fig. 2:¹ the constraint due the width of πH barely changes, while the the bands for the level shift of πH and πD significantly move upwards when going from $\mathcal{O}(p^2)$ to $\mathcal{O}(p^3)$, corresponding to the small corrections to the charge exchange reaction and a large shift in the charged-pion elastic channels due to the triangle graph alluded to above.


However, Fig. 2 does not provide a complete picture at $\mathcal{O}(p^3)$: the few-body contributions to $a_{\pi d}$ [20–22] are still based on the assumption of isospin symmetry. It remains to be seen whether the nice consistency between the three bands persists once isospin violation in the few-body part is included.

5. Summary and outlook

We have systematically analyzed isospin violation in the πN scattering lengths in all channels, including an estimate of the theoretical uncertainties. We find that isospin breaking is quite small in $\pi^- p \to \pi^0 n$, at the order of one percent at most, whereas the charged-pion elastic channels display more sizeable effects on the few-percent level. In particular, the triangle relation is violated by about 1.5% consistent with earlier findings in heavy-baryon ChPT and inconsistent with the 5–7% deviation extracted from the data at lowest pion momenta in [23, 24]. In addition, we find a substantial isospin-breaking correction to the neutral-pion-proton scattering length. Finally, we have shown that in a full $\mathcal{O}(p^3)$ calculation the value of the isoscalar scattering length will increase as compared to previous analyses of hadronic atoms [8].

An extension of this analysis beyond threshold for $\pi^{\pm}p \to \pi^{\pm}p$ and $\pi^{-}p \to \pi^{0}n$ can be found in [25], while a full calculation of isospin violation in the few-body contributions to the πd scattering length will be addressed in [26].

¹Experimental input: level shift of πH : $\varepsilon_{1s} = (-7.120 \pm 0.017) \,\text{eV}$ [17], width of πH : $\Gamma_{1s} = (0.823 \pm 0.019) \,\text{eV}$ [18], and $\pi^- d$ scattering length: $a_{\pi d} = (-0.0261 \pm 0.0005) \,M_{\pi}^{-1}$ [19].

Figure 2: Constraints on a^- and \tilde{a}^+ provided by the level shift of πH and πD and the width of πH . Solid (dashed) bands refer to isospin-breaking corrections at $\mathcal{O}(p^3)$ ($\mathcal{O}(p^2)$), respectively.

Acknowledgments

Partial financial support by the Helmholtz Association through funds provided to the virtual institute "Spin and strong QCD" (VH-VI-231), by the European Community-Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter" (acronym HadronPhysics2, Grant Agreement n. 227431) under the Seventh Framework Programme of the EU, by DFG (SFB/TR 16, "Subnuclear Structure of Matter") and by the Bonn-Cologne Graduate School of Physics and Astronomy is gratefully acknowledged.

References

- [1] S. Weinberg, The Problem Of Mass, Trans. New York Acad. Sci. 38 (1977) 185.
- [2] U.-G. Meißner and S. Steininger, *Isospin violation in pion-nucleon scattering*, *Phys. Lett. B* **419** (1998) 403 [hep-ph/9709453].
- [3] N. Fettes, U.-G. Meißner and S. Steininger, *On the size of isospin violation in low-energy pion nucleon scattering*, *Phys. Lett. B* **451** (1999) 233 [hep-ph/9811366].
- [4] G. Müller and U.-G. Meißner, *Virtual photons in baryon chiral perturbation theory*, *Nucl. Phys. B* **556** (1999) 265 [hep-ph/9903375].
- [5] N. Fettes and U.-G. Meißner, *Towards an understanding of isospin violation in pion nucleon scattering*, *Phys. Rev. C* **63** (2001) 045201 [hep-ph/0008181].
- [6] N. Fettes and U.-G. Meißner, *Complete analysis of pion nucleon scattering in chiral perturbation theory to third order*, *Nucl. Phys. A* **693** (2001) 693 [hep-ph/0101030].
- [7] J. Gasser, M. A. Ivanov, E. Lipartia, M. Mojžiš and A. Rusetsky, *Ground-state energy of pionic hydrogen to one loop, Eur. Phys. J. C* 26 (2002) 13 [hep-ph/0206068].

- [8] U.-G. Meißner, U. Raha and A. Rusetsky, *Isospin-breaking corrections in the pion deuteron scattering length*, *Phys. Lett. B* **639** (2006) 478 [nucl-th/0512035].
- [9] A. M. Bernstein, *Light quark mass difference and isospin breaking in electromagnetic pion production*, *Phys. Lett. B* **442** (1998) 20 [hep-ph/9810376].
- [10] A. M. Bernstein, M. W. Ahmed, S. Stave, Y. K. Wu and H. R. Weller, *Chiral Dynamics in Photo-Pion Physics: Theory, Experiment, and Future Studies at the HIγS Facility*, nucl-ex/0902.3650.
- [11] M. Hoferichter, B. Kubis and U.-G. Meißner, *Isospin breaking in the pion–nucleon scattering lengths*, *Phys. Lett. B* **678** (2009) 65 [0903.3890 [hep-ph]].
- [12] T. Becher and H. Leutwyler, *Baryon chiral perturbation theory in manifestly Lorentz invariant form*, *Eur. Phys. J. C* **9** (1999) 643 [hep-ph/9901384].
- [13] V. E. Lyubovitskij and A. Rusetsky, $\pi^- p$ atom in ChPT: Strong energy-level shift, Phys. Lett. B **494** (2000) 9 [hep-ph/0009206].
- [14] P. Zemp, *Pionic hydrogen in QCD+QED: decay width at NNLO*, PhD thesis, University of Bern, 2004.
- [15] U.-G. Meißner, U. Raha and A. Rusetsky, *The pion nucleon scattering lengths from pionic deuterium*, Eur. Phys. J. C **41** (2005) 213 [nucl-th/0501073].
- [16] J. Gasser, V. E. Lyubovitskij and A. Rusetsky, *Hadronic atoms in QCD + QED*, *Phys. Rept.* **456** (2008) 167 [0711.3522 [hep-ph]].
- [17] D. Gotta [Pionic Hydrogen Collaboration], Pionic hydrogen, Int. J. Mod. Phys. A 20 (2005) 349.
- [18] D. Gotta et al., Pionic hydrogen, Lect. Notes Phys. 745 (2008) 165.
- [19] P. Hauser et al., New precision measurement of the pionic deuterium s-wave strong interaction parameters, Phys. Rev. C 58 (1998) 1869.
- [20] S. R. Beane, V. Bernard, E. Epelbaum, U.-G. Meißner and D. R. Phillips, *The S-wave pion nucleon scattering lengths from pionic atoms using effective field theory*, *Nucl. Phys. A* **720** (2003) 399 [hep-ph/0206219].
- [21] V. Lensky, V. Baru, J. Haidenbauer, C. Hanhart, A. E. Kudryavtsev and U.-G. Meißner, *Dispersive and absorptive corrections to the pion deuteron scattering length*, *Phys. Lett. B* **648** (2007) 46 [nucl-th/0608042].
- [22] V. Baru, J. Haidenbauer, C. Hanhart, A. E. Kudryavtsev, V. Lensky and U.-G. Meißner, *Role of the Delta(1232) in pion-deuteron scattering at threshold within chiral effective field theory, Phys. Lett. B* **659** (2008) 184 [0706.4023 [nucl-th]].
- [23] W. R. Gibbs, L. Ai and W. B. Kaufmann, *Isospin Breaking In Low-Energy Pion Nucleon Scattering*, *Phys. Rev. Lett.* **74** (1995) 3740.
- [24] E. Matsinos, Isospin violation in the pi N system at low energies, Phys. Rev. C 56 (1997) 3014.
- [25] M. Hoferichter, B. Kubis and U.-G. Meißner, *Isospin violation in low-energy pion–nucleon scattering revisited*, 0909.4390 [hep-ph].
- [26] V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D. R. Phillips, in preparation.