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1. Introduction

A prominent feature of pion-nucleon (πN) scattering is the delta resonance,∆(1232), a peak
in the elastic cross section at the center-of-mass (CM) energym∆ ≡ mN + δ ≃ 1230 MeV, where
δ ∼ 290 MeV is the nucleon-delta mass splitting [1]. A resonance can be studied by considering the
unitarity and analyticity of theS matrix; however, the accuracy is hard to improve systematically
with these general principles alone. Our goal here is to investigateπN scattering from threshold up
to the delta resonance in an effective field theory (EFT) (for more details,see Ref. [2]).

Following several seminal papers [3], EFTs have been developed as model-independent ap-
proximations to low-energy strong interactions, which can be systematically improved by a series
in powers ofQ/MQCD, whereQ refers generically to small external momenta andMQCD ∼ 1 GeV
is the characteristic QCD scale. For reviews, see, for example, Refs. [4, 5]. Chiral perturbation
theory (ChPT) specializes in processes involving at most one nucleon [4]. ChPT with only pion
and nucleon fields has been extensively applied to near-thresholdπN scattering [6], resulting in a
perturbative expansion in powers ofQ/δ andmπ/δ , which converges slowly asmπ/δ ≃ 1/2. The
convergence can be improved with an explicit delta field. The explicit delta inπN scattering within
standard ChPT has been explored [7] and demonstrated in a fully consistent calculation [8].

Nevertheless, the perturbative nature of standard ChPT makes it impossible to describe the
delta resonance, a non-perturbative phenomenon. A non-perturbative treatment of the delta within
ChPT was considered in Ref. [9]; however, a systematic resummation did not exist until the seminal
work of Ref. [10], where it was justified by a power counting based on three separate scalesmπ ≪
δ ≪ MQCD, and this idea has been applied to various electromagnetic reactions in the deltaregion,
but for πN scattering few results have been published [11].

We employ a power counting developed for generic narrow resonances[12], in which there are
only two scalesMlo ∼ δ ∼ mπ andMhi ∼ MQCD. Thus the EFT expansion of theπN scattering am-
plitude pursued here is in powers ofQ/Mhi andMlo/Mhi. The kinematic region under consideration
spans over both threshold and the resonance.

2. Effective Lagrangian

To establish the notation, we review how the effective Lagrangian is constructed (for more
details of building chiral Lagrangian, seee.g., Refs. [4, 5, 14, 15]). The effective Lagrangian
should inherit the symmetries of QCD: Lorentz invariance, (approximate) two-flavor chiral sym-
metry (SU(2)L ×SU(2)R), parity, time-reversal invariance, and baryon-number conservation.

In the kinematic region where the EFT holds, external momenta are much smaller than the
nucleon mass,Q ≪ mN , and thus Lorentz invariance can be fulfilled perturbatively in powers of
Q/mN . One can start with a relativistic Lagrangian using the Rarita-Schwinger field for the delta,
and then reduce from it its nonrelativistic version [10, 16]. This way, however, extra effort needs to
be taken in order to control the spurious spin-1/2 sectors of the Rarita-Schwinger field. We employ
another approach that starts with heavy-baryon fieldsN for the nucleon and∆ for the delta, which
are, respectively, two- and four-component spinors in spin and isospin spaces. Eventually, the
effective Lagrangian only has the baryon degrees of freedom that represent forward propagation.
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The crucial ingredient in this approach is to develop an order-by-order Lorentz transformation, by
which one can constrain the coefficients of the rotation-invariant operators [15, 17].

Due to the presence of the delta field∆, one needs 2×4 matrices~S in spin space to make a
three-vectorN∆ bilinear, andΩi j a three-tensor. Similar transition matrices,TTT andΞab, can be
defined in isospace.

The chiral-invariant operators are isoscalars that are made of pion covariant-derivativeDDDµ ≡
D−1∂µπππ/2 fπ with D ≡ 1+ πππ2/4 f 2

π , N, ∆, and their covariant derivatives, for example,Dµ∆ ≡
(

∂µ + ttt(
3
2) ···EEEµ

)

∆ with EEEµ ≡ iπππ/ fπ ×××DDDµ .

We use the so-called chiral indexν [3] to organize the operators of the effective Lagrangian
ν = d + m + nδ + f /2−2, whered, m, nδ , and f are the numbers of derivatives, powers ofmπ ,
powers ofδ , and fermion fields, respectively. In constructing the Lagrangian, we use integration
by parts and field redefinitions to remove time derivatives on baryon fields except for the kinetic
terms. The Lagrangian terms with the two lowest indices are given by [15]

L
(0) = 2 f 2

π DDD2− 1
2D

m2
ππππ2 +N†iD0N +gAN†τττ~σN ··· ·~DDD

+∆†(iD0−δ )∆+4g∆
A∆†ttt(

3
2)~S( 3

2)∆ ··· ·~DDD+hA

(

N†TTT~S∆+H.c.
)

··· ·~DDD+ · · · (2.1)

and

L
(1) =

1
2mN

(

N†~D2N +∆†~D2∆
)

− hA

mN

(

iN†TTT~S · ~D∆+H.c.
)

···DDD0 + · · · , (2.2)

while the next-higher index yields

L
(2) = − δ

2m2
N

∆†~D2∆+
hA

2m2
N

[(

N†TTT~S~D2∆−N†TTT~S · ~D ~D∆
)

+H.c.
]

··· ·~DDD

+
hA

8m2
N

[(

δlmN†TTT~S · ~D∆+3N†TTT SlDm∆+2εi jlN
†TTT ΩimD j∆

)

+H.c.
]

···DlDDDm

+d1

(

N†TTT~S∆+H.c.
)

··· ·~D2~DDD+d2
m2

π
D

(

1− πππ2

4 f 2
π

)

(

N†TTT~S∆+H.c.
)

··· ·~DDD+ · · · (2.3)

Here,gA (g∆
A) is theν = 0 axial-vector coupling of the nucleon (delta) andhA (d1,2) is (are) the

ν = 0 (ν = 2) πN∆ coupling(s).

3. Power counting

When the CM (heavy-baryon) energiesE are much below the delta peak, the power counting is
standard [3, 4, 5] with the simple generalization thatδ counts asQ. The contribution of a diagram
with A nucleons (hereA = 1), L loops, andVi vertices with chiral indexνi is proportional toQρ ,
with

ρ = 2−A+2L+∑
i

Viνi . (3.1)

However, in the small region spanning the delta peak whose size is of the leading-order (LO)
delta self-energy,|E − δ | ∼ Σ(0)

∆ = O(Q3/M2
QCD), a resummation is needed in one-∆-reducible
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Figure 1: Contributions toπN scattering up to orderQ1: (A) Q−1 pole diagram; (B)Q0 pole diagrams; (C)
Q1 pole diagrams; (D)&(E)Q1 tree diagrams, of which (E) apply to both regions.Σ(n)

∆ is then-th order delta

self-energy,V (n)
π theπN∆ vertex function, andZ(n)

N (Z(n)
∆ ) the nucleon (delta) field renormalization constant.

diagrams because one insertion ofΣ(0)
∆ and the bare delta propagator contributesO(1): Σ(0)

∆ /(E −
δ ) = O(1). The resummation thus amounts to a dressed propagator

S(0)
∆ (E) =

[

E −δ +Σ(0)
∆ (δ )

]−1
, (3.2)

which scales asM2
QCD/Q3. This is an enhancement of two powers over the generic situation. As a

consequence, in one-∆-irreducible diagrams the standard ChPT power counting (3.1) still applies;
dressed delta propagators only need to be included in one-∆-reducible diagrams. We thus arrive
at a new power counting for one-∆-reducible diagrams within a narrow window around the delta
peak,

ρ = 2−A−2n∆ +2L+∑
i

Viνi , (3.3)

wheren∆ is the number of dressed delta propagators. This is the non-electromagneticversion ofρ
derived in a slightly different power counting in Ref. [10]. Diagrams up toQ1 are listed in FIG. 1.

It seems that the two different power-counting schemes, which are applicable in two different
regions, would lead to an EFT amplitude in the form of a piecewise function in theenergy. Even
worse, separating these two regions is somewhat arbitrary. A piecewise EFT is actually unnecessary
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if we enforce the pole diagrams even in the off-the-pole region, which is equivalent to shifting
a subset of higher diagrams into lower orders,i.e., a rearrangement of diagrams. This sort of
rearrangement still retains the essence of the original power counting aslong as one does not claim
a higher accuracy by doing so.

4. πN-scattering T matrix

The partial-waveT matrix is related to the phase shifts, in the channel with total angular
momentumj, orbital angular momentuml, and isospint, by

Tjlt(E) ≡−i
{

exp
[

2iθ jlt(E)
]

−1
}

. (4.1)

In the following we will use a more conventional notation for a specific partialwave: l2t,2 j. For
example,P13 refers to thel = 1 (P wave),t = 1/2, and j = 3/2.

Here the exact relation betweenE and the CM momentumk, E = (m2
N + k2)1/2 + (m2

π +

m2
N)1/2 −mN , is assumed, meaning that certain trivial, kinematick/mN terms are resummed —

what we refer to as semi-resummation. A strict heavy-baryon expansion can be readily obtained
afterwards.

At LO (Q−1) there is only a pole diagram, FIG. 1(A), which contributes only to theP33 wave,

T LO
P33

= − γ(0)(δ )

E −δ + iγ(0)(δ )/2

[

1+O

(

Q
MQCD

)]

, (4.2)

where

γ(0)(δ ) =
h2

A

24π f 2
π

(

δ 2−m2
π
)

3
2
[

1+δ/mN +(δ 2−m2
π)/(2mN)2]

3
2

1+δ/mN +(δ 2−m2
π)/2m2

N

(1+δ/mN)5 .

(4.3)
The NLO (Q0) amplitude has the same form as LO,

T NLO
P33

= − γ(0)(δ )+ γ(1)(δ )

E −δ + i
[

γ(0)(δ )+ γ(1)(δ )
]

/2

[

1+O

(

Q2

M2
QCD

)]

. (4.4)

However,γ(1)(δ ) vanishes in the CM frame when we do not expand kinematic relations in powers
of δ/mN .

Summing up the pole (FIG. 1(C)) and tree (FIG. 1(E)) diagrams, one firstfinds the NNLO
amplitude in theP33 channel,

T NNLO
P33

= − Γ(E)

E −δ + iΓ(E)/2
[1+ iTB(E)]+TB(E)+O

(

T LO
P33

Q3

M3
QCD

)

, (4.5)

where

TB(E) =
k3

6π f 2
π

(

g2
A

E
+

1
36

h2
A

E +δ

)

and Γ(E) =

(

m2
N + k2

)1/2

E +mN

[hA(1+κ)]2

24π f 2
π

k3 (4.6)

with

κ ≡ k2
δ

(4π fπ)2

[

(4π fπ)2

hA

(

−d1 +d2
m2

π
k2

δ

)

+ReG (mπ/kδ )

]

, (4.7)
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Figure 2: P33 phase shifts (in degrees) as a function ofWCM (in MeV), the CM energy including the nucleon
mass. The EFT strict heavy-baryon expansion at LO (NNLO) is represented by the red dashed (black solid)
line. The NLO curve coincides with LO. The light-blue band outlines the estimated systematic error of the
NNLO curve. The green dots are the results of the GW phase-shift analysis [13]. Points marked by a red
star (black square) are inputs for LO (NNLO).

where

G (x) =
2
3

(

1+ x2)− 1
2

{

−π
(

g2
A −

81
16

g∆
A

2
)

x3 +2πi

(

g2
A +

1
72

h2
A

)

+

[

g2
A −

1
72

h2
A

(

13+15x2)+
81
16

g∆
A

2
]

ln

(√
1+ x2−1√
1+ x2 +1

)}

(4.8)

andkδ satisfiesδ = (m2
N + k2

δ )1/2 +(m2
π + k2

δ )1/2−mN . Other channels are easy to calculate from
the one-∆-irreducible tree diagrams in FIG. 1(E). For the remainingP-wave channels,

T NNLO
P13

= T NNLO
P31

=
1
4

T NNLO
P11

= − k3

12π f 2
π

(

g2
A

E
− 2

9
h2

A

E +δ

)[

1+O

(

Q
MQCD

)]

. (4.9)

5. P-wave phase shifts

A number of low-energy constants (LECs) can be determined from other processes, such as
pion decay and neutron decay. We adopt the following values:mπ = 139 MeV,mN = 939 MeV,
gA = 1.26, andfπ = 92.4 MeV. Our strategy of fitting is to determine the free parameters,δ , hA, and
κ from theP33 phase shifts around the delta peak and then predict the phase shifts at lower energies
in all P waves. Shown in FIGs. 2 and 3 are the EFT curves (strict heavy-baryon expansion used)
fitted to the partial-wave analysis (PSA) by the George Washington (GW) group [13]. The PSA
points used to determine the free parameters are explicitly marked. Based on the power counting we
use, systematic errors of the EFT curves can be estimated, shown in FIGs.2 and 3 as light-colored
bands.

The LECs extracted from theP33 fit are given in TABLE 1. One can estimate the errors in the
NNLO values as the variation in each LEC within which the NNLOP33 curve in FIG. 2 roughly
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Figure 3: Predicted phase shifts (in degrees) in theP13, P31, andP11 channels as functions ofWCM (in
MeV), the CM energy including the nucleon mass. LO and NLO vanish in these channels; NNLO EFT
results in the strict heavy-baryon expansion are given by the black solid lines. The light-blue bands outline
the estimated systematic errors of the NNLO curves. The green dots are the results of the GW phase-shift
analysis [13].

Table 1: Low-energy constants extracted at LO, NLO, and NNLO from thefits using the strict heavy-baryon
expansion.

δ (MeV) hA κ

LO NLO NNLO LO NLO NNLO NNLO

293 293 321 1.98 4.21 2.85 0.046

stays within the error band. This way we findδ /MeV, hA, andκ to be within∼ ±4, ±0.30, and
±0.030, respectively, of the NNLO values in TABLE 1.

6. Summary

We have extended standard ChPT to deal with the non-perturbative delta resonance in an EFT
framework. The delta is treated as a nonrelativistic particle from the beginning, rather than being
represented by the Rarita-Schwinger field.

Like other EFTs that deal with non-perturbative phenomena, ours captures the non-perturbative
structure in LO. Subsequently, the power counting leads to a systematic, perturbative improvement
beyond LO. We applied this power counting to low-energyπN scattering, where we built the am-
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plitudes up to NNLO. We fitted ourP-wave amplitudes to the phase shifts given by Ref. [13]. With
just three free parameters, we obtained a good fit in theP33 channel.

The EFT approach presented here also provides the basis for a model-independent, unified
description, from threshold to past the delta resonance without discontinuity, of reactions involving
other probes and targets, including nuclei.
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