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1. The antikaon-nucleon scattering amplitude is of fundaalemiportance in nuclear, particle
and astrophysics, see e.g. Refs. [1, 2, 3, 4]. In particthalK_N system at threshold provides an
interesting testing ground of the chiral dynamics of QCDhvgtrange quarks due to ti€1405
resonance just below the scattering threshold. In facemxgntal information on thi§ — p scatter-
ing length from scattering data and kaonic hydrogen leviftlssis contradictory, as first stressed in
[5] and further elaborated on in Refs. [6, 7, 8]. A clarificatis expected from the upcomimg SID-
DHARTA experiment at DADNE, that intends to remeasure kaonic hydrogen with unpested
accuracy and is expected to give further constraints togbschlar and isovector kaon-nucleon
scattering lengths from the first measurement of the engrggtsim of kaonic deuterium.

On the theoretical side, effective field theory methods inous disguises are employed to pin
down theKN scattering length. Scattering information is usually gpedl in terms of unitarized
versions of chiral perturbation theory (see, e.g. [6, 7,]8,while the alalysis of kaonic hydrogen
data is firmly rooted in non-relativistic bound-state efffex field theory (for a recent review, see
[10]). Unitarization of course introduces some unwantedi@halependence and while the extrac-
tion of theKN scattering length from kaonic hydrogen data is devoid of thedel-dependence it
rests on the availablity of precise kaonic atom data. Bue lilee existing data from DEAR [11]
and KEK [12] are conflicting. It would therefore be very heipfo have another tool at hand that
would allow one to determine this fundamental quantity.

We want to argue here that lattice QCD provides such a framewds first shown by Lischer,
finite volume simualations of the energy levels of two-mtistates can give access to scattering
information [13, 14]. The AL expansion (herel. is the size of a box with volumé x L x L)

of two-particle state energy levels (well separated fromrubstates or resonances in the given
channel) takes a generic form wich can be used to extractabieed scattering length (see e.g.
[15]).

However, for the extraction of th€N scattering length, a generalization of this scheme is reede
since there is a strong channel coupling betwidhand =, the latter channel having its thresh-
old just about 100 MeV below the opening of tKeN one. In addition, the appearance of the
A(1405 just between these two thresholds further complicatesittarp. All these features can
be captured by a two-channel Lippmann-Schwinger equa##@awe will show in the following,

a suitable formulation of this equation in the finite volumievas for an unambigous extraction
of the complex-valued isoscal#& N scattering length. Note also that our method is similar to
the approach adopted in Ref. [17], where the problem watettasithin potential scattering the-
ory. In this paper, we use instead the language of the nativistic effective field theory (NR
EFT), which enables one to systematically address theteftdéparticle creation/annihillation and
relativistic corrections.

2. First we consider a two-channel Lippmann-Schwinger (L&jegign in NR EFT in the infinite
volume. Note that we are using a covariant version of the NR, Ebnsidered in Refs. [18]. The
channel number 1 refers #N and 2 toZ with total isospinl = 0. The resonancé (1405

is located between two thresholds, on the second Riemaret, stlese to the real axis (these
thresholds are defined lsy= (my + Mk)? ands = (ms +My)?) L. Consider first energies above

LIn the following, we work in the isospin limit and thus do nesplve the further splitting of these thresholds.
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KN thresholds > (my +Mg)2. The coupled-channel LS equation for thematrix elementgj; (s)
in dimensionally regularized NR EFT reads (we only consigleraves here)

T11 = Hi1+H11iq1T11 + Hi2igoTo1
To1 = Ho1+H21i01T11 + Ho2i02To1 (1)

with gqp = AY2(s;mg, M2)/(2V/9), 0z = AY/?(s,m&,M2) /(2,/5) andA (x,, 2) stands for the Kallen

function. Furthermore, thel;; (s) denote the driving potential in the corresponding chan@eh-

tinuation of the center-of-mass momentagmbelow thresholdms + My)? < s < (my 4 Mk )? is

obtained via

(—A (s, MZ,m{))M?
2,5

The resonance corresponds to a pole on the second Riemaginirshbe complexs-plane, its

position can de determined from the secular equation

i1 — —K1=—

(2)

A(S) = 1+ KRH11 — kRHao — KRKE (Hi1Hao — HZ,) 3)

with kR = —(—A (sr,m8,M2))¥/?/(2/xR) and kR = (—A (sz,m&,M2)1/2) /(2,/5). The energy
and Width_of the resonance are then given f8& = Er—il'r/2.
TheKN scattering length is related to the amplitulle ats = § = (my + My)? via

id2(st) (H12(s))?
1—iga(s) Hoa(s)

a1 = Ti(s) = Hu(s) + (4)
Thus, to pin down its complex value, we need to determinetiteetreal quantitiebl;1, Hi2, Hoo
ats= g appearing in Eq. (4)

3. We now consider the same problem in a finite volume. The mtatisymmetry is broken to a
cubic symmetry so that the infinite volume version of the L8aipn Eq. (1) takes the form (we
consider onlyS-waves here, neglecting the small mixing to higher partialte@s. The mixing can
be easily included at latter stage, see e.g., Ref. [19].),

2 2
Ti1 = Hi1— — Zoo(l;k%) HiiTii— ——=- ZOO(l;k%) HizTo1,

N N
2 2
To1 = Ho1— ﬁ Zoo(l;k%) Ho1Ti1 — ﬁ ZOO(l;k%) HooTo1 ,

()

with

4s ’
k2 — L 2 )\(S,M%,rﬂ%)
2 21 4s ’

im 5 ———. (6)
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Here, we have neglected the terms that vanish exponendigdlyargel. The secular equation that
determines the spectrum can be brought into the form

2

1— ﬁzoo(l;k§)|=(s,L) =0,
-1
(8L = ez~ 2 Zon(136) (Mo~ )| |1 2 Zao@idHa| (7

This is rewritten as

o(sL) = —@(k2) +nm, n=0,12,...

2k
o(kp) = —arctanonl;kZ%) , (8)
with
tand(s,L) = gu(s)F(s,L) . 9)

O(s,L) is called thepseudophaselt is a function of the energy/s and the level index, d,(s) =
o(s,Ln(9)).

The dependence of the pseudophasesamdL (or, equivalently, on the level indem) is very
different from that of the usual scattering phase. Nambg/glastic phase extracted from the lattice
data by using Lischer’'s formula is independent of the volumuglulo terms that exponentially
vanish at a largé. Further, the energies where the phase passes thm(®le close to the real
resonance locations. In contrast with this, the pseud@pbastains terms which are only power
suppressed at a larde Moreover, it contains the tower of resonances which arerelated to
the dynamics of the system in the infinite volume and merdlgckthe existence of the discrete
energy levels in the “shielded” channel.

Measuring the pseudophase on the lattice can be used tonitetetheKN scattering length. It
can be directly seen from the expression of the pseudophdseh depends on real functions
Hi1,H12,H2o. Extracting these from the data, we then find the scattegngth by using Eq. (4).
Note that in the expression for the scattering length we h&g@) evaluated at thresholsl= s.
We shall however demonstrate below that repla¢ifgs) by Hij (s ) in certain observables, related
to the pseudophase, introduces very small correctione sireeffective range term proportional to
(s—s) is suppressed bly—2 as compared to the leading order result. To be specific, wsiden
the following three observables:

1. For some chosen value of we measure the value of the pseudophai&g;L(s)) = & at
thresholds = (my + Mg )? andE; = /S (see Fig. 1 where a specific representation of the
pseudophase based on a two-channel K -matrix model deeddniglow, is shown). On the
other hand, we may expredsthroughH;; ats= s in the following way. At thresholdZqo

is singular,
Zoo(1;K?) = —\/%T % +0(1), (10)
so that
F(sL)lsos = Haa(s) —Hfy(s)/H1a(s) (11)
tand(s;L(s)) = G(s) (Haa(s) — HE(8)/Hu(s)) = Ge(s)1(s) - (12)
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Figure1: The pseudophas®e The energyE; at which the pseudophase passes thragghcorresponds to
the A(1405.

Thus, measuring,, we may extract the combinatidtp, — H122/H11.

2. Suppose that ta¥(s;L(s)) is infinite ats= s3 = E2 andL = L3 = L(s3). This occurs at the
energy where the denominator of Eq. (7) vanishes

1- = Zao(Likd(e) () = O (13)

We solve this equation by expanding bdth(s) and Zoo(1;kf(s)) in Taylor series in the
vicinity of s= . Substituting these expansions into Eq. (13), we obtain

4t (s) Hi(s) | Hu(s)? 1
2 11 11
== (11c C ol = 14
01(ss) 3 < o e 2 + 5)) (14)
wherec; andc, are known real numbers from the expansiorZgf. This means that mea-

suring the value of, where the tad(s,L(s)) becomes infinite, we may extradt; ats= s.
Note that the effective-range term, which contait{s(s ), contributes first at’(L~°).

3. Similarly, suppose that tai{s,L) = 0 ats=s, = E5 andL = L, = L(s,) (see Fig. 1). Using
the same technique as just described, we obtain:

_4nG(s) G(s) G(a)? 1
B(s) = — E <l+cl 5 +c 2 +ﬁ<l_—g>> , (15)
where
G(s) = Hia(s) — Hix(s) /Hza() - (16)

Therefore, measuring, we getHi1 — H122/H22.

Using finally Eq. (4), we can express the scattering lengtlkrims of the three quantitiés; ;,
| andG, all taken as= g

ig2(st) 1 (s)H11(st) (Haa(s)/G(st) — 1) ‘

1 i02(8) 1(8)H1a(3)/G(8) 7

ar1 =Hu(s)+
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Figure 2: Energy levels for the two-channel model with an explici.405) resonance in the finite volume.
The avoided level crossing which is observed at the enefggéseen 1430 MeV and 1440 MeV is not
related to the physical resonance in the infinite volume éfiécts the presence of tieN threshold. For
comparison, we plot the energy levels levels for the noaratting two-particle systente (dashed lines)
andKN (dotted lines).

This is the central result of this letter.

Finally, note that in the analysis of the lattice data it ma&yrbore convenient to directly fit the
explicit expression of the pseudophase given in Eq. (7)darthasured values on the lattice around
S = g, replacingH;j(s) by Hij(s) and consideringdij(s) (ij = 11,12 22) as three independent
fitting parameters. From the above discussion one may expattsuch a fit will lead to the
precise determination of these parameters. The effedivgerterms can be neglected since their
contribution is suppressed by three powerd ofin this case, one does not need to measure the
pseudophase in the whole interval betwsgandss.

4. Given the parametetd;; determined from fitting to the pseudophase, the positioh@pble on
the second Riemann sheet of the complex varigbléhich corresponds to th(1405-resonance,
can be determined from the secular equation (3). We expatteplacingH;j (s) by Hij () allows

one to locate the pole position at a reasonable accuracy.

5. In order to demonstrate the above-described proposal aipeawe have investigated a coupled-
channel model with an explicft (1405 resonance located at R&s = 1406 MeV and-2Im,/Sg=
50MeV. Effective range terms are neglectéd he resulting first four energy levels as a function
of M, L are shown in Fig. 2. We notice that the lowest leveH 1) does only show a moderate
volume dependence in the interval considered, quite inrashto the excited ones with> 2. For
M, L ~2...3the ground state level flattens arouhie- 1406 MeV that corresponds to th¢1405).

It is clear that, for this reason, the lowest level can not$edifor the extraction of théN scatter-
ing length. The excited levels show a more complicated behav this interval ofL. At the first

2The matrix elementsl;; are taken equal tbly; = —1.47573 fmHyp = 0.91581 fm Hyy = —0.34159 fm. This
corresponds ta;; = ag(K™N) = (—1.26+4-10.70) fm.
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glance, these levels exhibit the so-called avoided lewssing somewhere between 1430 MeV and
1440 MeV. In the elastic case, such a behavior of the enexglslesignalizes the presence of a
narrow resonance near this energy. However, this is notabe lsere. The peculiar behavior of the
excited energy levels is caused by the opening okiNethreshold. At higher energies, the picture
repeats — an avoided level crossing emerges, ifkNesystem has a discrete eigenvalue at this
energy in a finite volume. If the volume changes, the avoi@sdllcrossing moves (in difference
to the avoided level crossing corresponding to the “trusbrance). Fok — oo the bifurcation
lines accumulate at threshadd= s. In this limit, the scattering amplitude is not analyticsat s
(unitary cusp).

In Fig. 1 gives the pseudophase derived from the seaoad?) energy level. It shows the expected
behavior. First, it crosses/2 at./s= Ej, very close to the mass of thg1405. Then, it passes
mat./s=,/S = E, close to the threshold where its valueds> . At E,, the tangent of the
pseudophase vanishes at sigés;) < 0, we can conclude th&(s) > 0, cf. Eq. (15). Finally,
the value of 31/2 is reached a{/s = /53 = E3. Here,q2(s3) > 0 and consequentli;1(s) < O.
This can be deduced from Eq. (15) after the substitutiens sz andL, — La.

6. In this letter, we have generalized Liischer’s algorithntli@rextraction of the scattering length

from the finite-volume energy spectrum measured on thedatfihe modified algorithm applies

to the case when the scattering length is complex due to #wepce of the open channel(s) below
threshold. In the case of tHeN scattering with total isospih = 0, the scattering length can be

determined by measuring the volume dependence of the ficgiedXevel around the threshold

energy.
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