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We propose a method to determine the isoscalarK̄N scattering length on the lattice. Our method

represents the generalization of Lüscher’s approach in thepresence of inelastic channels (complex

scattering length). In addition, the proposed approach allows one to find the position of the S-

matrix pole corresponding the theΛ(1405) resonance.

6th International Workshop on Chiral Dynamics
July 6-10 2009
Bern, Switzerland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
D
0
9
)
0
1
6

A method to measure the Kbar-N scattering length in lattice QCD Michael Lage

1. The antikaon-nucleon scattering amplitude is of fundamental importance in nuclear, particle
and astrophysics, see e.g. Refs. [1, 2, 3, 4]. In particular,the K̄N system at threshold provides an
interesting testing ground of the chiral dynamics of QCD with strange quarks due to theΛ(1405)
resonance just below the scattering threshold. In fact, experimental information on theK−p scatter-
ing length from scattering data and kaonic hydrogen level shifts is contradictory, as first stressed in
[5] and further elaborated on in Refs. [6, 7, 8]. A clarification is expected from the upcomimg SID-
DHARTA experiment at DAΦNE, that intends to remeasure kaonic hydrogen with unprecedented
accuracy and is expected to give further constraints to the isoscalar and isovector kaon-nucleon
scattering lengths from the first measurement of the energy spectrum of kaonic deuterium.

On the theoretical side, effective field theory methods in various disguises are employed to pin
down theK̄N scattering length. Scattering information is usually analyzed in terms of unitarized
versions of chiral perturbation theory (see, e.g. [6, 7, 8, 9]), while the alalysis of kaonic hydrogen
data is firmly rooted in non-relativistic bound-state effective field theory (for a recent review, see
[10]). Unitarization of course introduces some unwanted model-dependence and while the extrac-
tion of theK̄N scattering length from kaonic hydrogen data is devoid of that model-dependence it
rests on the availablity of precise kaonic atom data. But here the existing data from DEAR [11]
and KEK [12] are conflicting. It would therefore be very helpful to have another tool at hand that
would allow one to determine this fundamental quantity.

We want to argue here that lattice QCD provides such a framework. As first shown by Lüscher,
finite volume simualations of the energy levels of two-particle states can give access to scattering
information [13, 14]. The 1/L expansion (here,L is the size of a box with volumeL× L× L)
of two-particle state energy levels (well separated from bound states or resonances in the given
channel) takes a generic form wich can be used to extract the desired scattering length (see e.g.
[15]).

However, for the extraction of thēKN scattering length, a generalization of this scheme is needed
since there is a strong channel coupling betweenK̄N andΣπ, the latter channel having its thresh-
old just about 100 MeV below the opening of thēKN one. In addition, the appearance of the
Λ(1405) just between these two thresholds further complicates the picture. All these features can
be captured by a two-channel Lippmann-Schwinger equation.As we will show in the following,
a suitable formulation of this equation in the finite volume allows for an unambigous extraction
of the complex-valued isoscalarK−N scattering length. Note also that our method is similar to
the approach adopted in Ref. [17], where the problem was treated within potential scattering the-
ory. In this paper, we use instead the language of the non-relativistic effective field theory (NR
EFT), which enables one to systematically address the effects of particle creation/annihillation and
relativistic corrections.

2. First we consider a two-channel Lippmann-Schwinger (LS) equation in NR EFT in the infinite
volume. Note that we are using a covariant version of the NR EFT, considered in Refs. [18]. The
channel number 1 refers tōKN and 2 toΣπ with total isospinI = 0. The resonanceΛ(1405)
is located between two thresholds, on the second Riemann sheet, close to the real axis (these
thresholds are defined byst = (mN + MK)2 ands′t = (mΣ + Mπ)2) 1. Consider first energies above

1In the following, we work in the isospin limit and thus do not resolve the further splitting of these thresholds.

2



P
o
S
(
C
D
0
9
)
0
1
6

A method to measure the Kbar-N scattering length in lattice QCD Michael Lage

K̄N threshold,s> (mN +MK)2. The coupled-channel LS equation for theT-matrix elementsTi j (s)
in dimensionally regularized NR EFT reads (we only considerS-waves here)

T11 = H11+H11 iq1T11+H12iq2T21 ,

T21 = H21+H21 iq1T11+H22iq2T21 , (1)

with q1 = λ 1/2(s,m2
N,M2

K)/(2
√

s), q2 = λ 1/2(s,m2
Σ,M2

π)/(2
√

s) andλ (x,y,z) stands for the Källen
function. Furthermore, theHi j (s) denote the driving potential in the corresponding channel.Con-
tinuation of the center-of-mass momentumq1 below threshold(mΣ + Mπ)2 < s< (mN + MK)2 is
obtained via

iq1 →−κ1 = −(−λ (s,M2
K ,m2

N))1/2

2
√

s
(2)

The resonance corresponds to a pole on the second Riemann sheet in the complexs-plane, its
position can de determined from the secular equation

∆(s) = 1+ κR
1 H11−κR

2 H22−κR
1 κR

2

(

H11H22−H2
12

)

(3)

with κR
1 = −(−λ (sR,m2

N,M2
K))1/2/(2

√
sR) and κR

2 = (−λ (sR,m2
Σ,M2

π)1/2)/(2
√

sR). The energy
and width of the resonance are then given by

√
sR = ER− iΓR/2.

TheK̄N scattering length is related to the amplitudeT11 ats= st = (mN +Mπ)2 via

a11 ≡ T11(st) = H11(st)+
iq2(st)(H12(st))

2

1− iq2(st)H22(st)
. (4)

Thus, to pin down its complex value, we need to determine the three real quantitiesH11,H12,H22

at s= st appearing in Eq. (4)

3. We now consider the same problem in a finite volume. The rotational symmetry is broken to a
cubic symmetry so that the infinite volume version of the LS equation Eq. (1) takes the form (we
consider onlyS-waves here, neglecting the small mixing to higher partial waves. The mixing can
be easily included at latter stage, see e.g., Ref. [19].),

T11 = H11−
2√
πL

Z00(1;k2
1)H11T11−

2√
πL

Z00(1;k2
2)H12T21 ,

T21 = H21−
2√
πL

Z00(1;k2
1)H21T11−

2√
πL

Z00(1;k2
2)H22T21 ,

(5)

with

k2
1 =

(

L
2π

)2 λ (s,M2
K ,m2

N)

4s
,

k2
2 =

(

L
2π

)2 λ (s,M2
π ,m2

Σ)

4s
,

Z00(1;k2) =
1√
4π

lim
r→1

∑
~n∈R3

1

(~n2−k2)r
. (6)
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Here, we have neglected the terms that vanish exponentiallyat a largeL. The secular equation that
determines the spectrum can be brought into the form

1− 2√
πL

Z00(1;k2
2)F(s,L) = 0 ,

F(s,L) =

[

H22−
2√
πL

Z00(1;k2
1)(H11H22−H2

12)

] [

1− 2√
πL

Z00(1;k2
1)H11

]−1

(7)

This is rewritten as

δ (s,L) = −φ(k2)+nπ , n = 0,1,2, . . .

φ(k2) = −arctan
π3/2 k2

Z00(1;k2
2)

, (8)

with
tanδ (s,L) = q2(s)F(s,L) . (9)

δ (s,L) is called thepseudophase. It is a function of the energy
√

s and the level indexn, δn(s) =

δ (s,Ln(s)).

The dependence of the pseudophase ons and L (or, equivalently, on the level indexn) is very
different from that of the usual scattering phase. Namely, the elastic phase extracted from the lattice
data by using Lüscher’s formula is independent of the volumemodulo terms that exponentially
vanish at a largeL. Further, the energies where the phase passes throughπ/2 lie close to the real
resonance locations. In contrast with this, the pseudophase contains terms which are only power
suppressed at a largeL. Moreover, it contains the tower of resonances which are notrelated to
the dynamics of the system in the infinite volume and merely reflect the existence of the discrete
energy levels in the “shielded” channel.

Measuring the pseudophase on the lattice can be used to determine theK̄N scattering length. It
can be directly seen from the expression of the pseudophase,which depends on real functions
H11,H12,H22. Extracting these from the data, we then find the scattering length by using Eq. (4).
Note that in the expression for the scattering length we needHi j (s) evaluated at thresholds= st .
We shall however demonstrate below that replacingHi j (s) by Hi j (st) in certain observables, related
to the pseudophase, introduces very small correction, since the effective range term proportional to
(s− st) is suppressed byL−3 as compared to the leading order result. To be specific, we consider
the following three observables:

1. For some chosen value ofn, we measure the value of the pseudophaseδ (st ;L(st))
.
= δt at

thresholdst = (mN + MK)2 andEt =
√

st (see Fig. 1 where a specific representation of the
pseudophase based on a two-channel K -matrix model de- scribed below, is shown). On the
other hand, we may expressδt throughHi j at s= st in the following way. At threshold,Z00

is singular,

Z00(1;k2) = − 1√
4π

1
k2 +O(1) , (10)

so that

F(s,L)|s→st = H22(st)−H2
12(st)/H11(st) (11)

tanδ (st ;L(st)) = q2(st)
(

H22(st)−H2
12(st)/H11(st)

) .
= q2(st) I(st) . (12)
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Figure 1: The pseudophaseδ . The energyE1 at which the pseudophase passes throughπ/2 corresponds to
theΛ(1405).

Thus, measuringδt , we may extract the combinationH22−H2
12/H11.

2. Suppose that tanδ (s;L(s)) is infinite ats= s3 = E2
3 andL = L3 = L(s3). This occurs at the

energy where the denominator of Eq. (7) vanishes

1− 2√
πL

Z00(1;k2
1(s3))H11(s3) = 0. (13)

We solve this equation by expanding bothH11(s) andZ00(1;k2
1(s)) in Taylor series in the

vicinity of s= st . Substituting these expansions into Eq. (13), we obtain

q2
1(s3) = −4πH11(st)

L3
3

(

1+c1
H11(st)

L3
+c2

H11(st)
2

L2
3

+O

(

1

L3
3

))

, (14)

wherec1 andc2 are known real numbers from the expansion ofZ00. This means that mea-
suring the value ofs, where the tanδ (s;L(s)) becomes infinite, we may extractH11 ats= st .
Note that the effective-range term, which containsH ′

11(st), contributes first atO(L−6).

3. Similarly, suppose that tanδ (s,L) = 0 ats= s2 = E2
2 andL = L2 = L(s2) (see Fig. 1). Using

the same technique as just described, we obtain:

q2
1(s2) = −4πG(st)

L3
2

(

1+c1
G(st)

L2
+c2

G(st)
2

L2
2

+O

(

1

L3
2

))

, (15)

where
G(st) = H11(st)−H2

12(st)/H22(st) . (16)

Therefore, measurings2, we getH11−H2
12/H22.

Using finally Eq. (4), we can express the scattering length interms of the three quantitiesH11,
I andG, all taken ats= st

a11 = H11(st)+
iq2(st) I(st)H11(st)(H11(st)/G(st)−1)

1− iq2(st) I(st)H11(st)/G(st)
. (17)
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Figure 2: Energy levels for the two-channel model with an explicitΛ(1405) resonance in the finite volume.
The avoided level crossing which is observed at the energiesbetween 1430 MeV and 1440 MeV is not
related to the physical resonance in the infinite volume but reflects the presence of thēKN threshold. For
comparison, we plot the energy levels levels for the non-interacting two-particle systemsπΣ (dashed lines)
andK̄N (dotted lines).

This is the central result of this letter.

Finally, note that in the analysis of the lattice data it may be more convenient to directly fit the
explicit expression of the pseudophase given in Eq. (7) to the measured values on the lattice around
s = st , replacingHi j (s) by Hi j (st) and consideringHi j (st) (i j = 11,12,22) as three independent
fitting parameters. From the above discussion one may expectthat such a fit will lead to the
precise determination of these parameters. The effective range terms can be neglected since their
contribution is suppressed by three powers ofL. In this case, one does not need to measure the
pseudophase in the whole interval betweens2 ands3.

4. Given the parametersHi j determined from fitting to the pseudophase, the position of the pole on
the second Riemann sheet of the complex variables, which corresponds to theΛ(1405)-resonance,
can be determined from the secular equation (3). We expect that replacingHi j (s) by Hi j (st) allows
one to locate the pole position at a reasonable accuracy.

5. In order to demonstrate the above-described proposal in practice, we have investigated a coupled-
channel model with an explicitΛ(1405) resonance located at Re

√
sR= 1406MeV and−2Im

√
sR=

50MeV. Effective range terms are neglected.2 The resulting first four energy levels as a function
of MπL are shown in Fig. 2. We notice that the lowest level (n = 1) does only show a moderate
volume dependence in the interval considered, quite in contrast to the excited ones withn≥ 2. For
MπL≃ 2. . .3 the ground state level flattens aroundE = 1406 MeV that corresponds to theΛ(1405).
It is clear that, for this reason, the lowest level can not be used for the extraction of thēKN scatter-
ing length. The excited levels show a more complicated behavior in this interval ofL. At the first

2The matrix elementsHi j are taken equal toH11 = −1.47573 fm,H12 = 0.91581 fm,H22 = −0.34159 fm. This
corresponds toa11 = a0(K−N) = (−1.26+ i 0.70) fm.
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glance, these levels exhibit the so-called avoided level crossing somewhere between 1430 MeV and
1440 MeV. In the elastic case, such a behavior of the energy levels signalizes the presence of a
narrow resonance near this energy. However, this is not the case here. The peculiar behavior of the
excited energy levels is caused by the opening of theK̄N threshold. At higher energies, the picture
repeats – an avoided level crossing emerges, if theK̄N system has a discrete eigenvalue at this
energy in a finite volume. If the volume changes, the avoided level crossing moves (in difference
to the avoided level crossing corresponding to the “true” resonance). ForL → ∞ the bifurcation
lines accumulate at thresholds= st . In this limit, the scattering amplitude is not analytic ats= st

(unitary cusp).

In Fig. 1 gives the pseudophase derived from the second (n= 2) energy level. It shows the expected
behavior. First, it crossesπ/2 at

√
s= E1, very close to the mass of theΛ(1405). Then, it passes

π at
√

s =
√

s2 = E2, close to the threshold where its value isδt > π. At E2, the tangent of the
pseudophase vanishes at sinceq2

1(s2) < 0, we can conclude thatG(st) > 0, cf. Eq. (15). Finally,
the value of 3π/2 is reached at

√
s=

√
s3 = E3. Here,q2

1(s3) > 0 and consequentlyH11(st) < 0.
This can be deduced from Eq. (15) after the substitutionss2 → s3 andL2 → L3.

6. In this letter, we have generalized Lüscher’s algorithm forthe extraction of the scattering length
from the finite-volume energy spectrum measured on the lattice. The modified algorithm applies
to the case when the scattering length is complex due to the presence of the open channel(s) below
threshold. In the case of thēKN scattering with total isospinI = 0, the scattering length can be
determined by measuring the volume dependence of the first excited level around the threshold
energy.
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