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Pentaquark states with strangenessS= +1 andIJπ = 01
2
±
,11

2
±
,03

2
±
,13

2
±

are investigated using

the QCD sum rule technique. Throughout the calculation, we emphasize the importance of the

establishment of a valid Borel window, which corresponds to a region of the Borel mass, where

the operator product expansion (OPE) converges and the presumed ground state pole dominates

the sum rules. We obtain such a Borel window by constructing the sum rules from the differenece

of two carefully chosen independent correlators and by calculating the OPE up to dimension 14.

As a result, we conclude that the state with qauntum numbers03
2
+

state appears to be the most

probable candidate for the experimantally observedΘ+(1540), while we also obtain states with

01
2
−
,11

2
−
,13

2
+

at slightly higher mass regions. We furthermore discuss the contribution of the

KN scattering states to the sum rules, and the possible influence of these states on our results.
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1. Introduction

The Θ+(1540) resonance, carrying positive strangeness (S= +1) and baryon number (B =
+1), is clearly an exotic state, as its minimal quark content must beuudds. After such a state was
theoretically predicted by the chiral soliton model [1], it was first experimentally detected in 2003
by the LEPS group at SPring8 [2]. This has led to a large amount of experimental and theoretical
works in the subsequent years, but many of the key problems surroundingΘ+(1540), such as its
unnaturally narrow width or its correct quantum number assignment, are still waiting to be solved.

Experimentally, the situation is rather unclear. After the CLAS collaboration has published
several papers on their pentaquark search with high statistics [3, 4, 5, 6], where no signal of
Θ+(1540) could be found, many people now seem to believe that the pentaquark does not exist
after all and that the whole story was just “a curious episode in the history of science" [7]. There
are, however still experiments that still claim to observe a signal ofΘ+ [8, 9] and therefore this
issue should not be considered to be completely settled yet. Additional experimental results, which
either unambiguously confirm the existence ofΘ+(1540) or otherwise can eliminate it completely,
are eagerly waited for.

The main subject of the present study is to compare the results of QCD sum rule calculations
for various possible quantum numbers (isospin, spin and parity) ofΘ+(1540). From this compar-
ison, we aim to determine which of the investigated quantum numbers is the one that most likely
has to be assigned to theΘ+(1540) state. Furthermore, we also look for possible excited states
below2GeV, that can maybe found in future experiments. For these purposes we use an improved
version of the QCD sum rule method, which has first been proposed in [10]. The basic idea of im-
provement is to use the difference of two correlators to construct the sum rule, which significantly
suppresses the continuum part of the spectral function and therefore helps to find a valid Borel
window, whose existence is a necessary condition for obtaining reliable results within the QCD
sum rule technique. Moreover we calculate the OPE up to dimenstion 14, which is indispensable
for a sufficient convergence of the expansion.

2. Formalism

In the QCD sum rule method [11, 12], the analytic properties of the two-point function

Π(q) = i
∫

d4xeiqx〈0|T[η(x)η(0)]|0〉 ≡Π1(q2) 6q+Π2(q2) (2.1)

are used to extract information from the physical states that couple to the operatorη . Here,Π1(q2)
is called the chiral-even, andΠ2(q2) the chiral-odd part. The analyticity of Eq.(2.1) allows one to
write down the dispersion relation

Πi(q2) =
1
π

∫ ∞

0
ds

ImΠi(s)
s−q2 , (2.2)

for i = 1,2.
In this study, we employ the usual “pole + continuum" parametrization for the spectral func-

tion, which appears in the imaginary part of the correlator:

ImΠi(s) = π|λi |2δ (s−m2
Θ+)+θ(s−sth)ImΠOPE

i (s). (2.3)
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Theδ -function for the ground state pole is justified by the expereimental results, which show that
the width ofΘ+(1540) is very narrow.

While the the low-energy part of the spectral function below the threshold parametersth is
phenomenologically parametrized as in Eq.(2.3), the left hand side of Eq.(2.2) and the second term
of Eq.(2.3) are calculated analytically using the operator product expansion (OPE). The results of
this calculation for the chiral even part can be generally expressed as follows:

ΠOPE
1 (q2) =

5

∑
j=0

C2 j(q2)5− j log(−q2)+
∞

∑
j=1

C10+2 j

(q2) j . (2.4)

Here,Ci contain various condensates and numerical factors.
Substituting Eq.(2.3) into the dispersion relation of Eq.(2.2), and applying the Borel transfor-

mation, the following expressions can be obtained (again for the chiral even part):

|λ1|2e−m2
Θ+/M2

=−
∫ sth

0
dse−s/M2

5

∑
j=0

C2 js
5− j +

∞

∑
j=1

(−1) jC10+2 j

Γ( j)(M2) j−1 ≡ f (M,sth). (2.5)

From these equations, the expressions formΘ+ and|λ1|2 can be exctracted straightforwardly:

m2
Θ+(M,sth) =

1
f (M,sth)

∂ f (M,sth)
∂ (−1/M2)

, (2.6)

|λ1|2 = f (M.sth)em2
Θ+ (M,sth)/M2

. (2.7)

Even thoughmΘ+(M,sth) in general depends on the Borel massM and the threshold parameter
sth, this dependence should be weak in the case of a strong ground state pole dominating the spectral
function belowsth. On the other hand, if theKN scattering states dominate the spectral function, a
strong dependence ofmΘ+(M,sth) onM andsth is expected.

3. Importance of the Borel window

To obtain reliable results with the QCD sum rule method, it is essential that the following two
conditions

LM
[
ΠOPE

highest order terms(q
2)

]

LM
[
ΠOPE

all terms(q2)
] ≤ 0.1 (3.1)

(LM stands for the Borel transformation) and
∫ sth

0
dse−

s
M2 ImΠOPE(s)

∫ ∞

0
dse−

s
M2 ImΠOPE(s)

≥ 0.5 (3.2)

are satisfied for a certain region of the Borel mass, which is called the Borel window. Here, Eq.(3.1)
has to be satisfied to make sure that the OPE converges sufficiently well, while Eq.(3.2) guarantees
that the pole contribution dominates the sum rule.

However, in the case of most of the QCD sum rule calculations of pentaquark states so far,
the two conditions (3.1, 3.2) have not been thoroughly checked, and no valid Borel window has
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been established [13]. The reason for this is firstly that the convergence of the OPE expansion
for a correlator of an interpolating field containing five quarks is considerably slower than in the
cases of interpolating fields containing only two or three quarks. Secondly, the high dimension
of the interpolating field of a pentaquark causes the continuum part of the spectral function to be
enhanced, which makes it difficult to obtain a high pole contribution.

A solution to this problem was proposed in a study by Kojo, Hayashigaki and Jido [10], where
they made use of the chiral properties of two independent interpolating fields and considered, in-
stead of one single correlator, the difference between two correlators of different interpolating
fields. By this procedure, they realized a strong suppression of the leading orders of the OPE,
which mainly contribute to the continuum part, and thus obtained a relatively large pole contribu-
tion.

We will follow the same lines of reasoning and consider two independent interpolating fields
carrying the same quantum numbersη1 and η2, and then construct a more general operator by
taking a linear combination of them:

η(x) = cosθη1(x)+sinθη2(x) (3.3)

Defining the correlator calculated with this general interpolating field asΠ(q2,θ), we consider the
difference of two independent correlators

ΠD(q2)≡Π(q2,θ1)−Π(q2,θ2) (3.4)

and constuct the sum rules for this new functionΠD(q2), for which we expect the leading orders of
the OPE to be suppressed.

Finally, the values of the mixing anglesθ1 andθ2 (in fact, the final result will only depend on
the combinationθ1 + θ2) and the threshold parametersth have to be determined. To this end we
emply the following to conditions:

1) A sufficiently wide Borel window exists.

2) mΘ+(M,sth) should only weakly depend on the Borel massM and on the threshold parameter
sth.

We will thus choose those values ofθ1 +θ2 andsth that most fully satify 1) and 2). Condition 1) is
essential to obtain reliable results with the QCD sum rule method, while condition 2) corresponds
to choosing the parameters so that the contribution of theKN scattering states to the sum rule is as
small as possible. This will discussed in more detail in the next section.

4. Contribution of the KN scattering states

Generally, ifKN scattering states have the same quantum numbers as the interpolating fields,
they may contribute to the sum rules to a certain extent. Therefore, we have to find a way to
distinguish them from narrow pole states that we are really interested in. Let us first consider what
the contribution of theKN scattering states to the spectral function should look like. It is known
that theKN interaction is weak and slightly repulsive. We therefore just use phase space as a first
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Figure 1: The “mass of the ground state pole" for spin1
2 and 3

2, obtained when only theKN scattering states
contribute to the spectral function. Shown are the results of the chiral even part.

approximation of theKN spectral function. This is a reasonable approximation as the qualitative
results of this section do not depend on the detailed form of the spectral function.

We then compute the results that would be obtained by the QCD sum rules if only theKN
scattering states contribute to the spectral function. This means that we will calculate the quantity
corresponding to Eq.(2.6), where for the spectral function we now use the expressions obtained
from phase space. The results of the chiral even part for spin1

2 and spin3
2 are given in Fig.1.

It is clearly seen that while the dependence on the Borel massM is relatively weak, the results
depend strongly on the threshold parametersth. This can intuitively be understood from the fact
that the spectral function containing only the phase space contribution is a fastly growing function
when the energy is increased. Therefore, the high energy regions near the threshold parametersth

will dominate the sum rule, which then leads to a behaviour as seen in Fig.1.

The results of this section show that the dependence ofm2
Θ+(M,sth) onsth provides us with an

indicator of how much theKN scattering states contribute to the sum rule: a linear dependence of
the same order as in Fig.1 suggests a large contribution of the scattering states, while a significantly
smaller dependence indicates that a narrow pole exists and is the dominant structure in the spectral
function.

5. Results

The results of the sum rules of the chiral even part for the various quantum numbers are given
in Fig. 2. These plots show the position of the presumed ground state polemΘ+(M,sth) (see Eq.
(2.6)) as a function of the Borel massM for three different values of the threshold parametersth.
The arrows indicate the boundaries of the Borel window. It is seen that we are able to obtain a valid
Borel window for the sum rules of all the investigated quantum numbers. Furthermore, it has to be
noted that the results of the chiral even part contain contributions from both positive and negative
parity states. It is thus necessary to, for instance, perform the parity projected sum rules [14] to
determine the parity of the states under investigation. That is what we have done, but the detailed
results of these calculations will have to be presented elsewhere [15]. We here just state the final
conclusions, which are identical for isospinI = 0 andI = 1: in the spin1

2 case we have found that
the plots shown in Fig.2 are dominated by negative parity states, while the parity for the spin3

2
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Figure 2: The mass of the pentaquark for several quantum number as a function of the Borel massM. The
arrows indicate the boundary of the Borel window for the middle value of

√
sth. The results are obtained

from the chiral even part.

states turned out to be positive. Putting everything together, these results can be summarized as in
Table1.

The statement “no state found below2.0 GeV" in Table1 means that either no valid Borel
window could be found or that the results of the sum rules did strongly depend onM andsth and
that therefore no evidence for a narrow ground state pole could be found. As is seen in Fig.2, the
result forILP = 01

2
±

depends onM andsth quite strongly, which suggests that we are here probably
observing mainlyKN scattering states. After parity projecting this result to negative parity, this
dependence onM andsth becomes in fact much weaker, which may signify that theKN scattering

Table 1: Summarized results for all quantum numbers that have been investigated. The allowedKN decay
channels of the respective quantum numbers are indicated in brackets.

Parity
+ -

J = 1
2 I = 0 no state found below2.0 GeV 1.5±0.3 GeV (?)

(KN P-wave) (KN S-wave)

I = 1 no state found below2.0 GeV 1.6±0.4 GeV
(KN P-wave) (KN S-wave)

J = 3
2 I = 0 1.4±0.2 GeV no state found below2.0 GeV

(KN P-wave) (KN D-wave)

I = 1 1.6±0.3 GeV no state found below2.0 GeV
(KN P-wave) (KN D-wave)
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states with positive parity are contaminating the chiral even part and therefore a result such as in
Fig. 2 is obtained. Nevertheless, concerning this state we can not be completely conclusive and
therefore have to put a question mark behind this result.

Next, we discuss the physical implications of the obtained results. A question that comes to
ones mind when looking at Table1 is, why can we not observeJπ = 1

2
+

states while we are seeing

the ones withJπ = 3
2
+

? These states are in some models considered to be spin-orbit partners [16],
so if these models are realistic and constitent with QCD, we should be able to observe both of these
states. There are at least two possible explanations for our results. One explanation could be that
the states withJπ = 1

2
+

in fact exist, but their coupling to the used operators are too small and/or
the KN scattering contribution is too large, so that a narrow peak structure cannot be extracted.
Another possible interpretation of the missingJπ = 1

2
+

states could be that, the spin-orbit partners
of the spin3

2 states are not the ones with spin1
2 but with spin5

2. This would mean thatΘ+ is indeed
a very exotic state, as in this case theuuddquarks have to form a spin 2 state, which would then
couple to the remainings. This is of course only a very speculative conjecture, but it would be
interesting to test it by calculating pentaquark states with spin5

2.
Another important point, that needs to be discussed, is the interpretation of the observedJπ =

1
2
−

states. This state was also found in a lattice study (conducted only for the isosinglet state),
where a resonance state was isolated from theKN scattering states [17]. Our results (especieally in
the isosinglet case) are somewhat ambiguous, and the error bars are large, so it is difficult to draw
any definite conclusions. In any case, whether such states turn out to be real pentaquark resonances
or not, they most possibly do not correspond to the observedΘ+ state, becauseJπ = 1

2
−

states can
decay intoKN by an S-wave, for which the width is expected to be much larger than the observed
value forΘ+, which is even less than1MeV [8]. Of course, in principle there may exist some so
far unknown mechanism, which suppresses the width strongly and which would allow to assign the
Jπ = 1

2
−

quantum numbers to theΘ+(1540), but with our present knowledge and experience, this
seems to be unlikely.

6. Conclusion

We have studied theS=+1pentaquark states with quantum numbersIJπ = 01
2
±
,11

2
±
,03

2
±
,13

2
±

,
to see which one is the most likely candidate for the observedΘ+(1540) state. To do this, we have
employed the QCD sum rule method, whose reliability is improved by analysing the difference of
two independent correlators, by which the contribution of the high-energy continuum states is sup-
pressed. Furthermore, by calculating the OPE up to dimension 14 it is made sure that the expansion
is converging well, and a valid Borel window can therefore be established.

The results for each quantum number are given in Table1. Considering first the spin12 states,

we could observe some evidence for resonance states withIJπ = 01
2
−

and11
2
−

in the region of
1.5GeV. As discussed in the previous section, we do not believe that these states correspond to
Θ+(1540), because their width is expected to be too large to be consistent with the experimental
value.

On the other hand, we have also found evidence for resonance states withIJπ = 03
2
+

and13
2
+

.
In both of these cases the values of the masses show only a weak dependence on the Borel mass
M and the threshold parametersth, as can be confirmed from Fig.2. For the isosinglet case this
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was already pointed out in [18]. This suggests that we are really observing narrow resonance states
in the spectral functions of these quantum numbers. As no isospin partners of theΘ+ have so far
been found, it is believed to be an isosinglet. We therefore conclude from our results that the most
probable quantum number candidate forΘ+(1540) is IJπ = 03

2
+

.
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