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1. Nuclear forces in chiral effective field theory

One of the most important questions in nuclear physics is howthe nucleons as the constituents
of nuclei interact with each other? Already 1935 Yukawa madean attempt to explain the nature
of the nucleon-nucleon interaction by a virtual meson exchange between nucleons [1]. Later the
discovery of pions and heavier mesons laid a foundation stone for the development of highly so-
phisticated phenomenological models for nuclear forces which were motivated by the original idea
of Yukawa. In the two-nucleon sector they give a perfect description of the experimental data at
the cost of often more than 40 unknown parameters fixed from the fit to data. In the three-nucleon
sector it is probably not feasible to follow a similar phenomenological path. Rich spin-isospin
structure allows much more possibilities to parameterize the three-nucleon force leading to much
more unknown constants which can hardly be fixed from the experimental input.

In order to improve our understanding of nuclear forces we need to learn how they are con-
nected to the underlying theory of strong interaction, Quantum Chromo Dynamics (QCD). In the
above mentioned phenomenological models this connection is obviously missing. From the QCD
point of view, nuclear forces are given as residual interaction between hadrons described by quark-
gluon dynamics. However, in the low energy sector far below the chiral scaleΛχ ∼ 1GeV quarks
and gluons are not the most efficient degrees of freedom for the description of nuclear processes.
Nuclear forces in this region are largely driven by chiral Goldstone boson dynamics which appears
due to spontaneous and explicit breaking of chiral symmetryin QCD. In the SU(2) scenario the
Goldstone bosons can be interpreted as pions which get theirmass due to explicit chiral symmetry
breaking by the small up and down quark masses. Since pions are Goldstone bosons, their inter-
action vanishes with vanishing four-momenta. This fact allows us to construct an effective field
theory (EFT) with nucleons and pions as degrees of freedom and the same underlying symmetries
of QCD in form of a perturbative expansion in low external momenta and pion mass divided by
hard scaleΛχ ∼ 1GeV [2, 3]. In this systematically, order-by-order improvable approach called
chiral perturbation theory (ChPT) we get both a direct connections to QCD and a description in
efficient hadronic (rather than quark) degrees of freedom byconstruction.

In the pure meson and one-nucleon sectors, ChPT has been usedto calculate various processes
like form factors, pion-nucleon, Compton scattering etc. (see [4] for a recent review). In the two
and more nucleon sector additional problem appears which does not allow to use ChPT as just a
perturbation theory. Almost two decades ago we learned fromthe seminal paper of Weinberg [5]
that diagrams with two (or more) nucleon cuts violate the power counting of ChPT. As a solution
to this problem he suggested to define an effective potentialwhich per construction should not
have any two (or more) nucleon cuts and thus can be calculatedperturbatively to a desired order by
using chiral EFT. In order to describe a given nuclear process we need to solve Lippman-Schwinger,
Faddeev or Faddeev-Jakubowsky equations numerically (with the previously constructed effective
potential as input) in the two-, three-, four- and more-nucleon sector, respectively.

This path has been followed in the last two decades by severalgroups. Chiral effective
nucleon-nucleon (NN) potential has been constructed up to next-to-next-to-next-to-leading-order
(N3LO). At this order 24 unknown low-energy-constants (LECs) coming from short range NN con-
tact interactions have been fitted to the proton-neutron scattering phase-shifts obtained from the Ni-
jmegen partial wave analysis (PWA) [6, 7]. At N3LO the chiral effective NN potential describes the
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Nijmegen data almost as good as other phenomenological potentials. The three-body forces have
been analyzed numerically only up to N2LO. At this order there appear two additional short-range
LECs which have been fitted e.g. to the binding energy of3H and S-wave doublet neutron-deuteron
scattering length. At N2LO the description of three-body observables is in some cases satisfactory.
The results for the differential cross section of elastic neutron-deuteron scattering e.g. are in good
agreement with experimental data. On the other hand there are some observables which are rather
poorly described at this order even at low energies. One example is the so-called symmetric space-
star configuration in neutron-deuteron break up reaction. In this configuration, the plane in the
CMS spanned by the outgoing nucleons is perpendicular to thebeam axis, and the angles between
the nucleons are 120◦. At Elab = 15MeV theoretical calculations based on both phenomenological
and chiral nuclear forces are unable to describe the data (see recent reviews [9, 10] for extensive
discussion). There is however a hope of improvement once N3LO three-body forces are included.

2. N3LO chiral three-nucleon force

An interesting point about the N3LO contributions to chiral three-nucleon forces is the ab-
sence of additional LECs at that order. Their potential appearance is just prevented by the un-
derlying symmetries of QCD. Rich spin-isospin structure ofthe N3LO contributions makes them
also promising to resolve the discrepancies in the description of some until now poorly described
three-nucleon observables.

The N3LO contributions can be divided into two parts. The first partis given by long-range
contributions which include following contributions:

• Two-pion exchange (2π) graphs (see graph (a) in Fig. 1) which have been considered by
Ishikawa and Robilotta [11] using the so-called infrared regularization method and by our
group [12] in the framework of unitary transformations.

• Two-pion-one-pion exchange (2π −1π) graphs which are visualized by graph (b) in Fig. 1.

• Three-pion exchange so-called ring diagrams which are visualized by graph (c) in Fig. 1.

Analytic expressions of all these contributions can be found in [12]. The second part is given by
shorter-range contributions which is visualized by graphs(d) and (e) in Fig.1 and corresponding
1/m corrections (withm the nucleon mass). Their construction has been by now finished and
will be published elsewhere. It is important to note that theconstruction of the N3LO forces is
unique only modulo unitary transformations. In the static limit, however, the natural choice of
unitary transformation is entirely dictated by renormalizability requirement of the three-nucleon
forces [13]. One can even speculate that in general an effective potential in the static limit is unique
once we additionally require its renormalizability.

3. Chiral EFT with ∆ isobar degrees of freedom

In the standard chiral EFT discussed so far only pions and nucleons are treated as dynamical
degrees of freedom. All other resonances like e.g.∆ or ρ are integrated out and their contributions
are encoded in the LECs. In this scheme pion four-momentaQ and massMπ are treated as a soft
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(a) (b) (c) (d) (e)

Figure 1: Various topologies that appear in the three-nucleon force at N3LO. Solid and dashed lines repre-
sent nucleons and pions, respectively. Shaded blobs are thecorresponding amplitudes. The long-range part
of the three-nucleon force considered in this paper consists of (a) 2π exchange graphs, (b) 2π-1π diagrams
and the ring diagrams (c). The topologies (d) and (e) involvefour-nucleon contact operators and are of
shorter range.

scale and the mass difference∆ = m∆ −mN between the lightest baryon∆ resonance and nucleon
as a hard scale which is assumed to be of the same size as the chiral symmetry breaking scale
Λχ ∼ 1GeV:

Q∼ Mπ ≪ ∆ = 293MeV. (3.1)

One can still argue that scales of the order of∼ 300MeV can be treated as a soft scale. In this
case one has to introduce the∆ degrees of freedom explicitely into the theory and enlarge the set
of expansion parameters by the delta-nucleon mass difference∆/Λχ :

Q∼ Mπ ∼ ∆ ≪ Λχ . (3.2)

This expansion is known in the literature as the small scale expansion (SSE) [14]. Integrating out
of ∆ degrees of freedom leads often to an enlargement of LECs. This e.g. happens with theππNN
LECsc3 andc4 which are saturated by the∆ isobar and are known to be unnaturally large. In the
theory with explicit∆, however, they have natural size. Therefore the unnatural enlargement ofci ’s
in the delta-less theory can be explained by large∆-contributions which get absorbed by theci ’s.

The appearence of unnaturally large LECs in an EFT can spoil its convergence. This can be
seen in the chiral effective potential: subleading-order contributions to chiral 2π-exchange potential
in the∆-less theory appear to be larger than the leading one. From this point of view, the explicit
inclusion of∆ isobar is well motivated: One can expect the LECs to be of natural size and the SSE
of chiral nuclear forces to possess a natural convergence.

4. Chiral nuclear forces with explicit ∆ isobar

Consideration of chiral nuclear forces with explicit∆ isobar started more than one decade ago.
Ordonez et al. [15] and Kaiser et al. [16] constructed leading ∆ resonance contributions to the chiral
nuclear forces. They have shown that the large N2LO contributions to the 2π-exchange potential
in the standard chiral EFT are shifted to NLO such that the dominant contribution to the nuclear
forces appear already at NLO in the∆-full scenario. In the standard chiral EFT three-nucleon
forces start to contribute at N2LO. This changes in a∆-full theory where the first three-nucleon
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Figure 2: Tree graphs for pion-nucleon scattering at NLO. The filled circles/squares denote lead-
ing/subleading vertices. Crossed graphs are not shown.

contribution starts already at NLO and is given by the well known Fujita-Miyazawa force [18, 19].
Recently we calculated the subleading∆ resonance effects [17] which contribute to N2LO chiral
nuclear forces. An interesting point is that at N2LO there are no corrections to the three-nucleon
forces coming from∆ isobar excitations: all possible NNN∆ contact interactions are forbidden
by the Pauli exclusion principle. The forces constructed out of building blocks with that contact
interaction disappear after antisymmetrization. So the only non-zero∆ resonance contribution to
the three-nucleon forces upto N2LO is given by the Fujita-Miyazawa force [20].

In order to discuss numerical results for the∆-full forces upto N2LO we need to fix all the
unknown constants which appear at this order. These are leading and subleading combination of
the pion-nucleon-delta coupling constantshA andb3 + b8, respectively, andci , i = 1,2,3,4, from
πN sector. We fixed them in two different fits to the S- and P-wave threshold parameters of pion-
nucleon scattering calculated upto second order in SSE. Thediagrams contributing to this order are
shown in Fig. 2. In the first fit we take largeNc value for

hA =
3gA

2
√

2
≃ 1.34,

wheregA = 1.27 is the nucleon axial vector coupling, and fitted all other constants to various
threshold parameter. In the second fit we usedhA = 1.05 which has been extracted from the Heavy-
Baryon∆-width analysis in the static limit [14] and is consistent with quark model relation.

hA =
6gA

5
√

2
≃ 1.07.

Numerical values for various LECs determined in this way aregiven in Table 1. Note that the
constantsc3 andc4 are strongly reduced in the∆-full theory which is consistent with our previous
considerations. With these constants we found for all effective NN potentials much better conver-
gence compared with the potentials in delta-less theory (see [17] for extensive discussion). The
same behavior can be seen in peripheral partial waves (see e.g. 3F3- and3F4-partial waves within
∆-full and∆-less theories in comparison with the Nijmegen and VirginiaTech PWA in Fig. 3). Note
that although the convergence in the∆-full theory is much better than in the∆-less one, the overall
N2LO results in both formulations are very similar.
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LECs Q2, no∆ Q2, fit 1 Q2, fit 2 Q3 no ∆ [21], fit 2

c1 −0.57 −0.57 −0.57 −1.42±0.03

c2 2.84 −0.25 0.83 3.13±0.04

c3 −3.87 −0.79 −1.87 −5.58±0.01

c4 2.89 1.33 1.87 3.50±0.01

hA – 1.34⋆ 1.05⋆ –

b3 +b8 – 1.40 2.95 –

Table 1: Determinations of the LECs from S– and P–wave threshold parameters inπN scattering based on
the Q2 fits with and without explicit∆’s. LECs used as input are marked by the star. Also shown are the
values determined in Ref. [21] from fit 2 atQ3 without explicit∆’s (the errors given are purely statistical and
do not reflect the true uncertainty of the LECs). The LECsci andb3 +b8 are given in GeV−1.
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Figure 3: 3F3- and3F4-wave NN phase shifts. The dotted curve is the LO prediction (i.e. based on the
pure one-pion-exchange potential). Dashed double-dotted(dashed) and solid (dashed-dotted) lines show the
NLO and N2LO results with (without) the explicit∆-contributions. The filled circles (open triangles) depict
the results from the Nijmegen multi–energy PWA [6, 7] (Virginia Tech single–energy PWA [8])

4.1 Leading isospin-breaking∆ isobar contributions

To estimate the size of isospin-breaking effects we also studied isospin-breaking contributions
to chiral NN forces within∆-full theory at leading order. In this presentation we concentrate only on
charge symmetry breaking (CSB) contributions to nuclear forces. For the full discussion see [22].

The leading CSB contributions to the nuclear force in the∆-full theory are proportional to
the nucleon- and∆-mass splittings. At leading order there are electromagnetic and strong isospin-
breaking contributions to the∆-mass splittings. While both of them contribute to the equidistant
splitting δm1

∆ in the∆ quartet, the non-equidistant splittingδm2
∆ is of pure electromagnetic origin.

To estimate the values of the∆-mass splittings we proceeded in two ways. In the first fit we used
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the most recent particle data group values for

m∆++ = 1230.80±0.30MeV and m∆0 = 1233.45±0.35MeV

together with the average massm∆ = 1233 MeV. With this input we get for the∆-mass splittings

δm1
∆ = −5.3±2.0MeV, δm2

∆ = −1.7±2.7MeV. (4.1)

Alternatively, instead of usingm∆ = 1233 MeV, we employed the quark model relation [23]

m∆+ −m∆0 = δmN, (4.2)

whereδmN is the nucleon mass splitting. The results for the∆-mass splittings determined in this
way appear to be consistent with the first determination:

δm1
∆ = −3.9MeV, δm2

∆ = 0.3±0.3MeV. (4.3)

Having determined the values for the∆-mass splittings we studied the CSB contributions to
the nuclear forces. In Fig. 4 we show CSB two-pion-exchange contributions to the two-nucleon
potential

V = (τ3
1 + τ3

2)(V III
C +V III

S ~σ1 ·~σ2 +V III
T ~σ1 ·~q~σ2 ·~q+ . . .) (4.4)

in configuration space. The contributions due to the nucleon-mass splittingδmN for the potentials
V III

S,T appear to be similar in the∆-less and∆-full theories. In the central potentialV III
C , however,

we see sizeable deviations. In all potentials we observe strong cancellations between theδmN- and
δm1

∆-contributions which lead to significantly weakerV III
C,S,T potentials in the∆-full theory.

4.2 Summary

We discussed the long- and shorter-range N3LO contributions to chiral three-nucleon forces.
No additional free parameters do appear at this order. Thereare five different topology classes
which contribute to the forces. Three of them describe long-range contributions which constitute
the first systematic corrections to the leading 2π exchange that appears at N2LO. Another two
contributions are of shorter range and include, additionally to an exchange of pions also one short
range contact interaction and all corresponding 1/m corrections. The requirement of renormaliz-
ability leads to unique expressions for N3LO contributions to the three-nucleon force (except for
1/m-corrections).

We presented the complete N2LO analysis of the nuclear forces with explicit∆ isobar degrees
of freedom. Although the overall results in the isospin-conserving case are very similar in the∆-
less and∆-full theories we found a much better convergence in all peripheral partial waves once
∆ resonance is explicitely taken into account. The leading CSB contributions to nuclear forces are
proportional to nucleon- and∆-mass splittings. There appear strong cancellations between the two
contributions which leads to weakerV III potentials.

We are looking forward to numerical studies of N3LO three-nucleon forces and implementa-
tions of N2LO forces in the∆-full EFT in future NN partial-wave analyses.
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Figure 4: Class-III (CSB) two-pion exchange potential. The left (right) panel shows the results obtained at
leading order in chiral EFT with explicit∆ resonances (at subleading order in chiral EFT without explicit ∆
degrees of freedom). The dashed and dashed-double-dotted lines depict the contributions due to the∆- and
nucleon-mass differencesδm1

∆ andδmN, respectively, while the solid lines give the total result.
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