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Nuclear lattice simulations Dean Lee

1. Introduction

Lattice simulations based on low-energy effective field theory have been used in studies of
nuclear matter [1] and neutron matter [2, 3, 4, 5, 6, 7]. The method has also been applied to light
nuclei in pionless effective field theory [8] and chiral effective field theory at leading order (LO)
[9]. More recently next-to-leading order (NLO) calculations have been carried out for the ground
state of neutron matter [10, 11]. A review of lattice effective field theory calculations can be found
in Ref. [12].

At leading order in chiral effective field theory the nucleon-nucleon effective potential is

VLO = V +VI2 +V OPEP. (1.1)

V , VI2 are the two independent contact interactions at leading order in the Weinberg power counting
scheme, and V OPEP is the instantaneous one-pion exchange potential. The interactions in VLO can
be described in terms of their matrix elements with two-nucleon incoming and outgoing momentum
states. For bookkeeping purposes we label the amplitude as though the two interacting nucleons
were distinguishable, A and B. In the following we use ~σ to signify the Pauli matrices for spin and
~τ to indicate the Pauli matrices for isospin.

For the two leading-order contact interactions the amplitudes are

A (V ) = C, (1.2)

A (VI2) = CI2~τA ·~τB. (1.3)

For the one-pion exchange potential,

A
(

V OPEP) = −

(

gA

2 fπ

)2 (~τA ·~τB) (~q ·~σA) (~q ·~σB)

q2 +m2
π

. (1.4)

Here m is the nucleon mass, mπ the pion mass, fπ the pion decay constant, and gA the nucleon axial
charge.

In Ref. [9] two different lattice actions were considered which were later denoted LO1 and LO2
[10]. The interactions in VLO1 include one-pion exchange and two zero-range contact interactions
corresponding with amplitude

A (VLO1) = C +CI2~τA ·~τB +A
(

V OPEP) . (1.5)

The interactions in VLO2 consist of one-pion exchange and two Gaussian-smeared contact interac-
tions,

A (VLO2) = C f (~q)+CI2 f (~q)~τA ·~τB +A
(

V OPEP) , (1.6)

where f (~q) is a lattice approximation to a Gaussian function. The smeared interactions in LO2
were used to better reproduce S-wave phase shifts for nucleon momenta up to the pion mass.

In Ref. [10] phase shifts were calculated for these two lattice actions using the spherical wall
method [13] at spatial lattice spacing a = (100 MeV)−1 and temporal lattice spacing at = (70
MeV)−1. NLO corrections were also computed and the unknown operator coefficients determined
by fitting to low-energy nucleon-nucleon scattering data.
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Figure 1: The “improved” LO action is iterated non-perturbatively while the remaining higher-order inter-
actions are treated using perturbation theory.

The replacement of pointlike interactions in LO1 with Gaussian-smeared interactions in LO2 is
similar to the lattice improvement program of Symanzik used in lattice QCD actions [14, 15]. There
is a conceptual difference however since we are dealing with an effective field theory rather than
a renormalizable field theory. The higher-order operators we consider do not only cancel lattice
artifacts but also include higher-order interactions of the effective theory. In our lattice calculations
the improved leading-order action is treated non-perturbatively while higher-order interactions are
included as a perturbative expansion. The choice of improved action sets a dividing line between
perturbative and non-perturbative interactions. This is sketched in Fig. 1. The dividing line should
be immaterial so long as the perturbative expansion converges. At any given order, lattice calcu-
lations using different improved actions should agree up to corrections the size of terms at next
order.

2. Dilute neutrons at next-to-leading order

In Ref. [11] the ground state energy for dilute neutron matter was computed using the lattice
action LO2 and auxiliary-field Monte Carlo. Next-to-leading-order corrections to the energy were
also calculated. In this calculation the dominant source of systematic error was the large size of
NLO corrections for Fermi momenta larger than 100 MeV. The problem is caused by attractive
P-wave interactions introduced by Gaussian smearing in LO2 that must be cancelled by NLO cor-
rections. In systems with both protons and neutrons this P-wave correction is numerically small
when compared with the strong binding produced by S-wave interactions. For pure neutron matter,
however, the P-wave interactions are not as small an effect in relative terms.

These problems were resolved using a new leading-order action LO3 introduced in Ref. [16].
The interactions in VLO3 correspond with the amplitude,

A (VLO3) = CS=0,I=1 f (~q)

(

1
4
−

1
4
~σA ·~σB

)(

3
4

+
1
4
~τA ·~τB

)

+CS=1,I=0 f (~q)

(

3
4 +

1
4
~σA ·~σB

)(

1
4 −

1
4
~τA ·~τB

)

+A
(

V OPEP) . (2.1)

The Gaussian-smeared interactions are multiplied by spin and isospin projection operators. Only
the CS=0,I=1 term contributes in pure neutron matter. Using the LO3 action with NLO corrections,
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Figure 2: Ground state energy ratio E0/E free
0 for LO3 and NLO3 versus Fermi momentum kF . For com-

parison we show results for FP 1981 [17], APR 1998 [18], CMPR v6 and v8′ 2003 [19], SP 2005 [20], GC
2007 [21], and GIFPS 2008 [22].

we have computed the ground state energy for dilute neutrons in a periodic box [16]. For spatial
lattice spacing a = (100 MeV)−1 and temporal lattice spacing at = (70 MeV)−1 simulations were
done with 8, 12, 16 neutrons in periodic boxes with lengths L = 4,5,6,7. In Fig. 2 we show
results for the ratio of the interacting ground state energy to non-interacting ground state energy,
E0,NLO/E free

0 , as a function of Fermi momentum kF . For comparison we show other results from
the literature: FP 1981 [17], APR 1998 [18], CMPR v6 and v8′ [19], SP 2005 [20], GC 2007 [21],
and GIFPS 2008 [22].

3. Three-body forces in light nuclei at next-to-next-to-leading order

A number of different phenomenological three-nucleon potentials have been investigated in
the literature [23, 24, 25, 26, 27, 28, 29, 30, 31]. Effective field theory provides a systematic
method for estimating the relative importance of three-body interaction terms. Few-nucleon forces
in chiral effective field theory beyond two nucleons were first introduced in Ref. [32]. In Ref. [33]
it was shown that three-nucleon interactions at NLO cancel and three-body effects first appear at
NNLO. The NNLO three-nucleon effective potential includes a pure contact potential, V (3N)

contact ,
one-pion exchange potential, V (3N)

OPE , and a two-pion exchange potential, V (3N)
TPE ,

V (3N)
NNLO = V (3N)

contact +V (3N)
OPE +V (3N)

TPE . (3.1)

The corresponding diagrams are shown in Fig. 3.
Similar to our bookkeeping notation for two-nucleon interactions, we write the tree-level am-

plitude for three-nucleon interactions where the first nucleon is type A, the second nucleon type
B, and the third type C. We sum over all permutations P(A,B,C) of the labels, and ~qA, ~qB, ~qC
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Figure 3: Three-nucleon forces at NNLO. Diagrams (a), (b), and (c) show the contact potential, V (3N)
contact,

one-pion exchange potential V (3N)
OPE , and two-pion exchange potential V (3N)

TPE .

are defined as the differences between final and initial momenta for the respective nucleons. The
amplitudes for V (3N)

contact and V (3N)
OPE are [34, 35]

A

[

V (3N)
contact

]

=
1
2E ∑

P(A,B,C)

(~τA ·~τB) , (3.2)

A

[

V (3N)
OPE

]

= −
gA

8 f 2
π

D ∑
P(A,B,C)

~qA ·~σA

q2
A +m2

π
(~qA ·~σB)(~τA ·~τB) . (3.3)

The coefficients E and D are both cutoff dependent. The coefficient E determines the short dis-
tance interactions between three nucleons, while D determines the pion coupling to two nucleons.
Following the notation introduced in Ref. [35], we define dimensionless parameters cE and cD such
that

E =
cE

f 4
π Λχ

, D =
cD

f 2
π Λχ

, (3.4)

where Λχ ' mρ . We take Λχ = 700 MeV.
For convenience we separately label three parts of the two-pion exchange potential,

V (3N)
TPE = V (3N)

TPE1 +V (3N)
TPE2 +V (3N)

TPE3. (3.5)

The corresponding amplitudes are

A

[

V (3N)
TPE1

]

=
c3
f 2
π

(

gA

2 fπ

)2

∑
P(A,B,C)

(~qA ·~σA)(~qB ·~σB)
(

q2
A +m2

π
)(

q2
B +m2

π
) (~qA ·~qB) (~τA ·~τB) , (3.6)

A

[

V (3N)
TPE2

]

= −
2c1m2

π
f 2
π

(

gA

2 fπ

)2

∑
P(A,B,C)

(~qA ·~σA) (~qB ·~σB)
(

q2
A +m2

π
)(

q2
B +m2

π
) (~τA ·~τB) , (3.7)

A

[

V (3N)
TPE3

]

=
c4

2 f 2
π

(

gA

2 fπ

)2

× ∑
P(A,B,C)

(~qA ·~σA) (~qB ·~σB)
(

q2
A +m2

π
)(

q2
B +m2

π
) [(~qA ×~qB) ·~σC] [(~τA ×~τB) ·~τC] . (3.8)
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Figure 4: Plot of pcotδ versus p2 for spin-doublet nucleon-deuteron scattering in the center-of-mass frame.
For the NNLO calculation we take cD = 1.0 fitted to the physical value for Etriton. The experimental results
are from Ref. [42].

The low-energy constants c1,c3,c4 parameterize the coupling of the nucleon to two pions. These
constants have been determined from fits to low-energy pion-nucleon scattering data [36], and in
the following we use the values c1 = −0.81 GeV−1, c3 = −4.7 GeV−1, c4 = 3.4 GeV−1 [37].

At fixed lattice spacing we constraint the two unknown coefficients by fitting to the triton
binding energy and spin-doublet nucleon-deuteron scattering via Lüscher’s finite volume formula
[38, 39, 40]. We fix the coefficient cE as a function of cD by matching the physical triton energy at
infinite volume, −8.48 MeV. The value of cD is then determined from the spin-doublet nucleon-
deuteron scattering phase shifts. Results for the doublet nucleon-deuteron scattering phase shift
are shown in Fig. 4 using the LO2 lattice action for lattice spacing a = (100 MeV)−1 and temporal
lattice spacing at = (150 MeV)−1 with cD = 1.0 [41]. It turns out however that nucleon-deuteron
scattering provides only a mild constraint on cD. Currently other methods are being investigated
for constraining cD, including one recent suggestion to determine cD from the triton beta decay rate
[43].

Aside from the uncertainty in cD, we have determined all interactions on the lattice up to
NNLO including three-body forces. Using these interactions we have computed the ground state
energy of the alpha particle without Coulomb interactions on a periodic lattice using auxiliary-field
projection Monte Carlo [41]. In Fig. 5 we plot the NNLO α-particle energy versus cD, with cE

fitted to the physical triton energy. The bands indicate the estimated error due to stochastic noise
and asymptotic fits at large Euclidean projection time t. The α energy shown at −29.0 MeV
is the estimated Coulomb-subtracted energy [31]. At large volumes the best agreement with the
Coulomb-subtracted α energy occurs at cD ≈−4. The α binding increases in strength by 0.2 MeV
for each unit increase in cD, and so we find reasonable agreement for all values of cD ∼ O(1).
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Figure 5: Energy of the α particle at NNLO versus cD. The contact interaction cE is fitted to the physical
triton energy. The dotted line is the estimated Coulomb-subtracted energy −29.0 MeV.

Acknowledgements

Partial financial support from the Deutsche Forschungsgemeinschaft (SFB/TR 16), Helmholtz
Association (contract number VH-NG-222 and VH-VI-231), and U.S. Department of Energy (DE-
FG02-03ER41260) are acknowledged. This work was further supported by the EU Hadron-
Physics2 project “Study of strongly interacting matter”. The computational resources for this
project were provided by the Jülich Supercomputing Centre at the Forschungszentrum Jülich.

References

[1] H. M. Müller, S. E. Koonin, R. Seki, and U. van Kolck, Phys. Rev. C61 044320, 2000.

[2] D. Lee and T. Schäfer, Phys. Rev. C72 024006, 2005.

[3] D. Lee, B. Borasoy, and T. Schäfer, Phys. Rev. C70 014007, 2004.

[4] D. Lee and T. Schäfer, Phys. Rev. C73 015201, 2006.

[5] D. Lee and T. Schäfer, Phys. Rev. C73 015202, 2006.

[6] T. Abe and R. Seki, Phys. Rev. C79 054002, 2009.

7



P
o
S
(
C
D
0
9
)
0
2
7

Nuclear lattice simulations Dean Lee

[7] T. Abe and R. Seki, Phys. Rev. C79 054003, 2009.

[8] B. Borasoy, H. Krebs, D. Lee, and U.-G. Meißner, Nucl. Phys. A768 179–193, 2006.

[9] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A31 105–123, 2007.

[10] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A35 343–355, 2008.

[11] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A35 357–367, 2008.

[12] D. Lee, Prog. Part. Nucl. Phys. 63 117–154, 2009.

[13] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A34 185–196, 2007.

[14] K. Symanzik, Nucl. Phys. B226 187, 1983.

[15] K. Symanzik, Nucl. Phys. B226 205, 1983.

[16] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A40 199–213, 2009.

[17] B. Friedman and V. R. Pandharipande, Nucl. Phys. A361 502–520, 1981.

[18] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C58 1804–1828, 1998.

[19] J. Carlson, J. Morales, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C68 025802, 2003.

[20] A. Schwenk and C. J. Pethick, Phys. Rev. Lett. 95 160401, 2005.

[21] A. Gezerlis and J. Carlson, Phys. Rev. C77 032801, 2008.

[22] S. Gandolfi, A. Y. Illarionov, S. Fantoni, F. Pederiva, and K. E. Schmidt, Phys. Rev. Lett. 101 132501,
2008.

[23] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17 360–365, 1957.

[24] B. H. J. McKellar and R. Rajaraman, Phys. Rev. Lett. 21(7) 450–453, 1968.

[25] S.-N. Yang, Phys. Rev. C10 2067–2079, 1974.

[26] S. A. Coon, M. D. Scadron, and B. R. Barrett, Nucl. Phys. A242 467, 1975.

[27] S. A. Coon et al, Nucl. Phys. A317 242–278, 1979.

[28] S. A. Coon and W. Glöckle, Phys. Rev. C23(4) 1790–1802, 1981.

[29] J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A401 59–85, 1983.

[30] H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C28 1812–1828, 1983.

[31] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa, Phys. Rev. C56
1720–1750, 1997.

[32] S. Weinberg, Nucl. Phys. B363 3–18, 1991.

[33] U. van Kolck, Phys. Rev. C49 2932–2941, 1994.

[34] J. L. Friar, D. Huber, and U. van Kolck, Phys. Rev. C59 53–58, 1999.

[35] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, and H. Witala, Phys. Rev. C66
064001, 2002.

[36] V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys. E4 193–346, 1995.

[37] P. Büttiker and U.-G. Meißner, Nucl. Phys. A668 97–112, 2000.

[38] M. Lüscher, Commun. Math. Phys. 104 177, 1986.

8



P
o
S
(
C
D
0
9
)
0
2
7

Nuclear lattice simulations Dean Lee

[39] M. Lüscher, Commun. Math. Phys. 105 153–188, 1986.

[40] M. Lüscher, Nucl. Phys. B354 531–578, 1991.

[41] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A41 125–139, 2009.

[42] W. T. H. van Oers and J. D. Seagrave, Phys. Lett. B24 562–565, 1967.

[43] D. Gazit, S. Quaglioni, and P. Navratil, Phys. Rev. Lett. 103 102502, 2009.

9


