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The current status of effective field theory (EFT) descriptions of nucleon-nucleon (NN) interac-

tions is briefly reviewed, and a new formulation of EFT which treats pion interactions perturba-

tively is presented. This approach differs from the Kaplan-Savage-Wise (KSW) expansion in that

the singular short distance part of the pion tensor interaction is summed to all orders.
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1. Weinberg and KSW

Weinberg was the first to describe an EFT for nuclear forces [1, 2, 3], and devised the prescription
that one compute the nuclear potential in an EFT expansion, truncate at a given order, and then
solve the Lippmann-Schwinger equation exactly with that potential. This program has since been
pursued by a number of groups [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], with
very impressive fits to phase shift data atN3LO. An advantage of this approach is that the long dis-
tance part of the interaction correctly incorporates chiral symmetry; furthermore, with Weinberg’s
power counting scheme for the EFT expansion, there is in principle a systematic improvement of
the results with increasing order. A disadvantage of Weinberg’s scheme is that in its naive im-
plementation, there are divergences that cannot be absorbed by operators included at that order,
arising from the singular nature of the EFT potential [21, 22, 23]. Thus results depend on a regula-
tor scaleΛ which cannot be removed, implying that the treatment of short distance interactions is
model-dependent. An analysis of high partial wave channels at NLO in the Weinberg EFT in ref.
[23] demonstrated that the cutoff dependence was a feature of all channels subject to an attractive
pion tensor force — despite the fact that there is no local operator to absorb this model dependence
until order(`+1) in the expansion for a channel with angular momentum`. Furthermore ref. [23]
demonstrated that at this order, observables in channels with an attractive tensor interaction are par-
ticularly sensitive to the value of the cutoff even at energies as low asTlab = 50 MeV. It is argued
that predictions at a given order only vary at the level of higher order corrections as the regulator
is varied over some range, so that the model dependence does not interfere with the predictive
power of the EFT. This hope is difficult to verify since the computations are all numerical, and the
numerical evidence suggests that the acceptable range forΛ is very narrow.

The alternative KSW theory entails an expansion of the NN scattering amplitude, instead of
the nuclear potential, effected by computing a well-defined class of Feynman diagrams at each
order in the expansion [21, 24, 25]. KSW power counting is not determined by how operators
scale near the trivial IR fixed point of the nucleon contact interaction; instead it is determined by
operator scaling about the nontrivial UV fixed point corresponding to infinite scattering length. At
this fixed point nucleon operators for s-wave scattering develop large anomalous dimensions and
are resummed nonperturbatively, a reasonable starting point given how much larger NN scattering
lengths are than the range of their interaction.

The KSW scheme expands the NN scattering amplitude in powers ofQ, where the nucleon mo-
mentump, pion massmπ and the inverse scattering length 1/a are all consideredO(Q), while other
mass scales such as the nucleon massM, the pion decay constantfπ are taken to beO(1). It was
argued that convergence of the KSW expansion is governed by the scaleΛNN = 16π f 2

π /(g2
AM) =

300 MeV. An advantage of this approach is that the scattering amplitudes can be computed ana-
lytically, and at each order the amplitude is renormalized and independent of the cutoff. NN phase
shifts were computed to order NNLO in refs. [26, 27]; the result for the spin-singlet1S0 phase shift
is shown in Fig. 1, plotted versus the momentump of each nucleon in the center of mass frame.

Although successful in the spin-singlet channel, it was discovered in ref. [27] that the KSW
expansion does not converge in the3S1 channel, and the authors identified the singular tensor
potential mediated by pions, scaling as−1/r3 for small r, to be the cause of the failure. Such a
singular attractive interaction is incapable of supporting a ground state and no contact interaction
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Figure 1: The1S0 NN phase shift in the KSW expansion, versus momentum in the center of mass frame to
NNLO, compared with the Nijmegen PWA93 partial wave analysis [28].

can remedy this pathology. One possible solution suggested in [22] is to expand around the chiral
limit, treating the infinite number of bound states in the pion potential as being short range and
outside the realm of validity of the EFT.

2. A New Expansion

In ref. [29] we propose a different solution: we modify the pion propagator in a manner reminiscent
of Pauli-Villars regulation characterized by a heavy mass scaleλ . This modification removes the
1/r3 singularity in pion exchange, effectively shifting that physics into the contact interactions and
reordering the summation of strong short-distance effects. The advantages of the KSW expansion
are retained: there is a well-defined power counting scheme that organizes the calculation, and
results are analytic. Dependence on the scaleλ can therefore be studied analytically, and we
find that all contributions that grow as powers ofλ are absorbed into counterterms. The limit
λ → ∞ is therefore smooth, and the KSW expansion is recovered in that limit. Here we present
promising results for the low-lying spin triplet phase shifts to NNLO that indicate convergence of
the expansion.

Our starting point is the assumption that the failure of the KSW expansion is due to the singular
short distance pion tensor interaction, which can be eliminated by a shift in the contact interactions
of the EFT. The underlying principles of EFT imply that we are free to distort the short range pion
interactions however we please, as the counterterms serve to ensure the correct low energy effects
of short distance physics. We therefore choose the modification in order to: (i) make it possible
to analytically perform the diagrammatic expansion; (ii) leave unaltered the KSW expansion of
the spin-singlet channel, since apparently no convergence problem is encountered there. These
considerations lead us to replace the pion propagatorGπ(q,mπ) by

Gπ(q,mπ)+G(1,1)(q,λ )+G(1,0)(q,λ ) (2.1)
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where the subscript(I ,J) indicates the isospin and spin of a fictitious meson. Including couplings
at the ends of the propagators, these expressions are given by

Gπ(q,mπ) = i
g2

A

4 f 2
π

(q ·σσσ1)(q ·σσσ2)(τττ1 · τττ2)
q2 +m2

π

G(1,0)(q,λ ) = i
g2

Aλ 2

4 f 2
π

(τττ1 · τττ2)
q2 +λ 2 , (2.2)

andG(1,1)(q,λ ) = −Gπ(q,λ ). TheG(1,1) term looks like exchange of a pion with the wrong sign
propagator and massλ , canceling the short distance 1/r3 part of the pion-induced tensor interaction
for r . 2π/λ . TheG(1,0) term is included to exactly cancelG(1,1) (up to a contact interaction) in
the spin-singlet channel; it resembles the exchange of anI = 1, J = 0 meson, also of massλ . In the
above expressionsgA' 1.25 andfπ ' 93 MeV;σσσ andτττ are spin and isospin matrices respectively.
Note that the only free parameter is the mass scaleλ . We expect that forλ & 2ΛNN the derivative
expansion is not adversely affected, and that the original KSW expansion is recovered in theλ →∞
limit.

We emphasize that we are not usingG(1,1) andG(1,0) to model real meson exchange, but only
as a device to eliminate the strong short distance behavior from the tensor pion exchange, putting
all that physics in the contact interactions which are fit to data. Choosing the masses inG(1,1) and
G(1,0) to both equalλ greatly simplifies the analytic computations.

3. NNLO calculation of spin-triplet amplitudes

Making use of the modified pion propagator eq. (2.1) and classifying the mass scaleλ to also
be O(Q), we have computed all the Feynman diagrams in [26, 27] relevant for the3S1, 3D1 and
ε1 partial wave channels. These diagrams are evaluated using dimensional regularization and we
choose the renormalization scale,µ = mπ . The analytic formulas for our NNLO calculations will
be given elsewhere; here we present the results graphically. In Fig. 2 we show our results with
λ = 750 MeV for the3S1, 3D1 and ε1 phase shifts, compared with the Nijmegen partial wave
analysis [28]. All three of our results are improvements over the NNLO KSW computation in
[26, 27], and with the exception ofε1, show signs of converging on the correct answer. The result
for ε1 is less convincing, but it should be noted that the anomalously small value forε1 in nature
suggests that delicate cancellations are at play, and one would only expect an EFT prediction to
start converging at high order in the expansion.

The dependence of our results onλ is displayed in Fig. 3, where the bands indicate the changes
in the phase shifts over the range 600 MeV≤ λ ≤ 1000 MeV . It is apparent from these figures
that our results are not extremely sensitive at lowp to the value we take forλ .

The role of the scaleλ in these calculations can be easily addressed given the analytic form we
have derived for the scattering amplitudes. It may seem strange thatλ—a regularization scale—is
being treated asO(Q) which is our low energy expansion scale. In particular, one might worry
that scattering amplitudes have terms proportional to powers ofλ/ΛNN, which is formallyO(Q)
but numerically> 1. In fact though one can show analytically that at each order in the expan-
sion, contributions to the amplitudes proportional to positive powers ofλ are all absorbed into the
counterterms available at that order. Therefore the amplitudes only depend on inverse powers of
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Figure 2: New results for the3S1, 3D1, andε̄1 phase shifts plotted versus momentum in the center of mass
frame to NNLO, compared with the Nijmegen PWA93 partial wave analysis.

λ , and in theλ → ∞ limit the fictitious meson propagators in eq. (2.1) decouple and one smoothly
recovers the results of [26, 27].

4. Remaining issues

The EFT scheme we have presented here for computing NN scattering in perturbation theory ap-
pears to converge well and preserve the desirable feature of the KSW scheme that at each order the
amplitude can be computed as a well defined set of Feynman diagrams. Unlike the KSW scheme,
there is now a new dimensionful parameterλ which regulates the short distance tensor interaction.
The manner with which we have performed this regulation is certainly not unique, and we have
shown that our results are not particularly sensitive to the value ofλ , and that over a wide range for
λ the variation of the phaseshifts are comparable to or smaller than higher order corrections in the
EFT expansion.

On the other hand, we know that by takingλ →∞ we recover the KSW expansion, which fails
to converge abovep∼ 100 MeV. The parameterλ apparently plays a role analogous to the renor-
malization scaleµ in perturbative QCD. The scaleµ is unphysical, and a nonperturbative QCD
calculation will not depend on it; however, at any finite order in perturbation theory, amplitudes
do depend onµ, and varyingµ corresponds to reordering the perturbative expansion. Choosing
µ appropriately (e.g., via the BLM scale-setting prescription [30]) can optimize the perturbative
expansion, while non-optimal choices forµ lead to poor convergence. Similarly,λ is an unphys-
ical parameter, and varyingλ constitutes a reordering of the the EFT expansion, with smallerλ
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Figure 3: The NLO (green band) and NNLO (blue band) results for the3S1, 3D1, andε̄1 phaseshifts showing
their variation asλ is varied in the range 600 MeV≤ λ ≤ 1000 MeV.

resulting in more of the pion interaction being accounted for in the resummed contact interactions.
Takingλ ' 750 MeV appears to optimize the expansion, while choosingλ = ∞ yields the standard
KSW expansion which fails to converge at relatively low momenta.

It is not possible to directly compare our expansion with the Weinberg expansion results at
a given order, since the calculations are arranged differently. For example, one-pion and two-
pion exchange appear at NLO and N3LO in the KSW expansion respectively, while they appear at
LO and NLO in the Weinberg expansion. Nevertheless, numerically our NNLO results compare
favorably with the NLO Weinberg expansion results in [11], with the exception ofε1 which is
comparable to LO.

The perturbative EFT described here provides a well defined prescription for computing a
number of additional processes to NNLO, such as electromagnetic effects, including form factors,
Compton scattering, polarizabilities, and radiative capture, and it will be interesting to compare
such results with experiment to thoroughly judge the efficacy of this method. An important out-
standing issue is the generalization of the power counting to account for the higher partial waves.
Evidently this poses a particularly difficult challenge to EFT descriptions of nuclear forces and
the perturbative formulation described here is no exception. This issue will be addressed in future
work.
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