
P
o
S
(
C
D
0
9
)
0
5
0

Complex mass renormalization in EFT
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1. Introduction

The construction of consistent chiral effective field theories with heavy degrees of freedom is
a non-trivial problem. For example, in baryon chiral perturbation theory the usual power counting
is violated if one uses the dimensional regularization and the minimal subtraction scheme [1]. The
current solutions to this problem either involve the heavy-baryon approach [2] or use a suitably
chosen renormalization condition [3, 4, 5, 6]. Due to the small mass difference between the nucleon
and the ∆(1232) in comparison with the nucleon mass, the ∆ resonance can be consistently included
in the framework of effective field theory [7, 8, 9, 10, 11].

On the other hand, the treatment of the ρ meson or the inclusion of heavier baryon resonances
such as the Roper resonance is more complicated. We address the issue of power counting in such
effective theories by using the complex-mass renormalization scheme [12, 13, 14], which can be
understood as an extension of the on-mass-shell renormalization scheme to unstable particles.

As an application we consider the masses and the widths of the ρ meson and the Roper reso-
nance. More details can be found in Refs. [15, 16].

2. Rho meson

We start with the most general effective Lagrangian for ρ and ω mesons and pions in the
parametrization of the model III of Ref. [17]:

L = L
(2)

π +Lρπ +Lω +Lωρπ + · · · .

The individual expressions relevant for the calculations of this work read

L
(2)

π =
F2

4
Tr
[
∂µU (∂ µU)†

]
+

F2 M2

4
Tr
(
U† +U

)
,

Lρπ = −1
2

Tr
(
ρµνρ

µν
)
+

[
M2

ρ +
cx M2 Tr

(
U† +U

)
4

]
Tr
[(

ρ
µ − iΓµ

g

)(
ρµ −

iΓµ

g

)]
,

Lω = −1
4
(
∂µων −∂νωµ

)
(∂ µ

ω
ν −∂

ν
ω

µ)+
M2

ω ωµωµ

2
,

Lωρπ =
1
2

gωρπ εµναβ ω
ν Tr

(
ρ

αβ uµ

)
, (2.1)

where

U = u2 = exp
(

i~τ ·~π
F

)
, ρ

µ =
~τ ·~ρ µ

2
,

ρ
µν = ∂

µ
ρ

ν −∂
ν
ρ

µ − ig [ρµ ,ρν ] ,

Γµ =
1
2
[
u†

∂µu+u∂µu†uµ = i
[
u†

∂µu−u∂µu†] . (2.2)

All the fields and parameters in Eqs. (2.1) are bare quantities. In order to increase the readability
of the expressions we have omitted the usual subscript 0. In Eqs. (2.1), F denotes the pion-decay
constant in the chiral limit, M2 is the lowest-order expression for the squared pion mass, Mρ and
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Mω refer to the bare ρ and ω masses, g, cx, and gωρπ are coupling constants. We use the KSFR
relation [18, 19]

M2
ρ = 2g2F2 . (2.3)

To perform the renormalization we express the bare quantities in terms of renormalized ones:

Mρ,0 = MR +δMR ,

cx,0 = cx +δcx ,

· · · (2.4)

We apply the complex-mass renormalization scheme [12, 13, 14] and choose M2
R = (Mχ− iΓχ/2)2

as the pole of the ρ-meson propagator in the chiral limit. Mχ and Γχ are the pole mass and the
width of the ρ meson in the chiral limit, respectively. Both are input parameters in our approach.
In the complex-mass renormalization scheme, the counterterms are in general complex quantities.

The presence of large external momenta of the ρ meson leads to a considerable complication
in the power counting for loop diagrams. It is necessary to investigate all possible flows of the
external momenta through the internal lines of a loop diagram. Next, one needs to determine the
chiral orders for all flows of external momenta. Finally, the smallest of these orders is defined as
the chiral order of the given diagram.

The power counting rules are as follows. Let q collectively stand for a small quantity such as
the pion mass. A pion propagator counts as O(q−2) if it does not carry large external momenta and
as O(q0) if it does. A vector-meson propagator counts as O(q0) if it does not carry large external
momenta and as O(q−1) if it does. The pion mass counts as O(q1), the vector-meson mass as
O(q0), and the width as O(q1). Vertices generated by the effective Lagrangian of Goldstone bosons
L

(n)
π count as O(qn). Derivatives acting on heavy vector mesons count as O(q0). The contributions

of vector meson loops can be absorbed systematically in the parameters of the effective Lagrangian.
The dressed propagator, expressed in terms of the self energy

iΠ
ab
µν(p) = iδ

ab [gµνΠ1(p2)+ pµ pν Π2(p2)
]

(2.5)

has the form

iSab
µν(p) =−iδ

ab
gµν − pµ pν

1+Π2(p2)
M2

R+Π1(p2)+p2Π2(p2)

p2−M2
R−Π1(p2)+ i0+ . (2.6)

The pole of the propagator is found as the (complex) solution to the following equation:

z−M2
R−Π1(z) = 0 . (2.7)

We define the pole mass and the width of the ρ meson by parameterizing

z = (Mρ − iΓ/2)2 . (2.8)

The solution to Eq. (2.7) can be found perturbatively as a loop expansion

z = z(0) + z(1) + z(2) + · · · . (2.9)
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(a) (b) (c)

Figure 1: One-loop contributions to the ρ-meson self-energy at O(q3). The dashed, solid, and wiggly lines
correspond to the pion, the ω meson, and the ρ meson, respectively.

Each of these terms has its own chiral expansion. Up to third chiral order the pole reads

z = z(0) = M2
R + cxM2 . (2.10)

The one-loop contributions to the vector self-energy up to O(q3) are shown in Fig. 1. The
contributions of diagrams (a) and (b) to Π1 are given by

Π1(a) =
g2
[
2A0(M2)−

(
p2−4M2

)
B0(p2,M2,M2)

]
16π2(n−1)

,

Π1(b) = −
(n−2)g2

ωρπ

64π2(n−1)

{
M4 B0(p2,M2,M2

ω)−
[
2B0(p2,M2,M2

ω)M2
ω +A0(M2)−A0(M2

ω)

+2B0(p2,M2,M2
ω)p2]M2 +B0(p2,M2,M2

ω)p2 +M2
ω

[
B0(p2,M2,M2

ω)M2
ω

+A0(M2)−A0(M2
ω)
]
−
[
2B0(p2,M2,M2

ω)M2
ω +A0(M2)+A0(M2

ω)
]

p2
}

. (2.11)

Using dimensional regularization with n space-time dimensions, the loop functions read

A0
(
m2) = −32π

2
λ m2−2m2 ln

m
µ

,

B0
(

p2,m2
1,m

2
2
)

= −32π
2
λ +2ln

µ

m2
−1

−1
2

(
1+

m2
2

m2
1(ω−1)

)
2F1

(
1,2;3;1+

m2
2

m2
1(ω−1)

)
− ω

2 2F1 (1,2;3;ω) ,

ω =
m2

1−m2
2 + p2 +

√(
m2

1−m2
2 + p2

)2−4m2
1 p2

2m2
1

, (2.12)

where 2F1 (a,b;c;z) is the standard hypergeometric function, µ is the scale parameter and

λ =
1

16π2

{
1

n−4
− 1

2
[
ln(4π)+Γ

′(1)+1
]}

. (2.13)

The ρππ vertex in diagram (a) should count as O(q0). However, its large component does not
contribute to Π1. Therefore, the Π1 part of diagram (a) has order O(q4). Diagram (c) contains the
contributions of the counterterms.

In diagram (b) we take Mω = MR.
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We fix the counterterms such that the pole in the chiral limit stays at M2
R. The contributions of

diagrams (a), (b), and (c) to the pole, expanded up to O(q4), read

z(1) =
g2M4

16π2 M2
R

(
3−2 ln

M2

M2
χ

−2 iπ

)
−

g2
ωρπM3Mχ

24π
−

g2
ωρπM4

(
ln M2

M2
χ

−1
)

32π2 +
ig2

ωρπ M3Γχ

48π
.

(2.14)

3. Roper Resonance

The most general effective Lagrangian, relevant for the subsequent calculation of the pole of
the Roper propagator at order O(q3) reads:

L = L0 +L
(2)

π +LR +LNR +L∆R , (3.1)

where L0 is given by

L0 = N̄ (i∂/ −mN0)N + R̄(i∂/ −mR0)R

−Ψ̄µξ
3
2

[
(i∂/ −m∆0)gµν − i(γµ

∂
ν + γ

ν
∂

µ)+ iγ
µ

∂/γ
ν +m∆0 γ

µ
γ

ν

]
ξ

3
2 Ψν . (3.2)

Here, N and R denote nucleon and Roper isospin doublets with bare masses mN0 and mR0, respec-
tively. Ψν are the vector-spinor isovector-isospinor Rarita-Schwinger fields of the ∆ resonance [20]
with bare mass m∆0 and ξ

3
2 is the isospin-3/2 projector (see Ref. [10] for more details).

The interaction terms LR, LNR, and L∆R are constructed following Ref. [21]. At leading order

L
(1)

R =
gR

2
R̄γ

µ
γ5uµR . (3.3)

The next-to-leading-order Roper Lagrangian is given by

L
(2)

R = c∗1,0〈χ+〉 R̄R , (3.4)

where c∗1,0 is a coupling constant and χ+ = M2(U +U†). The nucleon-Roper interaction reads

L
(1)

NR =
gNR

2
R̄γ

µ
γ5uµN +h.c. . (3.5)

Finally, the leading-order interaction between the delta and the Roper is given by

L
(1)

∆R =−g∆R Ψ̄µ ξ
3
2 (gµν + z̃γ

µ
γ

ν)uν R+h.c. , (3.6)

where we take the ”off-mass-shell parameter” z̃ =−1.
To renormalize the loop diagrams, we apply the complex-mass renormalization and write:

mR0 = zχ +δ zχ ,

mN0 = m+δm ,

m∆0 = z∆χ +δ z∆χ ,

c∗1,0 = c∗1 +δc∗1 ,

· · · , (3.7)
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(a) (b) (c)

Figure 2: One-loop self-energy diagrams of the Roper. The dashed, solid, double-dashed, and double-solid
lines correspond to the pion, nucleon, Roper, and delta, respectively.

where zχ is the complex pole of the Roper propagator in the chiral limit, m is the mass of the
nucleon in the chiral limit, and z∆χ is the pole of the delta propagator in the chiral limit.

We organize our perturbative calculation by applying the standard power counting of Refs. [22],
i.e., an interaction vertex obtained from an O(qn) Lagrangian counts as order qn, a pion propaga-
tor as order q−2, a nucleon propagator as order q−1, and the integration of a loop as order q4. In
addition, we assign the order q−1 to the ∆ propagator and to the Roper propagator (carrying loop
momenta). Within the complex-mass renormalization scheme, such a power counting is respected
in the range of energies close to the Roper mass.

The dressed propagator of the Roper

iSR(p) =
i

p/ − zχ −ΣR(p/)
, (3.8)

where ΣR(p/) denotes the self-energy, has a complex pole which is obtained from the equation

z− zχ −ΣR(z) = 0 . (3.9)

To order O(q3) the Roper self-energy consists of a tree-order contribution

Σtree = 4c∗1M2 , (3.10)

and the loop diagrams shown in Fig. 2. For the diagrams (a), (b), and (c) of Fig. 2 we obtain

Σ(a) =
3g2

NR

128π2F2

[
Ô1(m)A0

(
m2)+ Ô2(m)A0

(
M2)+ Ô3(m)B0

(
p2,m2,M2)] , (3.11)

Σ(b) =
3g2

R

128π2F2

[
Ô1(zχ)A0

(
z2

χ

)
+ Ô2(zχ)A0

(
M2)+ Ô3(zχ)B0

(
p2,z2

χ ,M2
)]

, (3.12)

Σ(c) =
g2

∆R
48π2F2

[
Ô4 + Ô5A0

(
z2

∆χ

)
+ Ô6A0

(
M2)+ Ô7B0

(
p2,z2

∆χ ,M2
)]

, (3.13)

where

Ô1(x) = p/
(

1+
x2

p2

)
+2x,

Ô2(x) = p/
(

1− x2

p2

)
,

Ô3(x) = p/

[
−p2

(
1− x2

p2

)2

+M2
(

1+
x2

p2

)]
+2M2x.
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Ô4 =
1
6

[
3p/z2

∆χ −12p2z∆χ −4p/ p2 +4p2 p2−3M2

z∆χ

+ p/
2(p2)2−3M4−8p2M2

z2
∆χ

]
,

Ô5 =
1
p2

[
p/z2

∆χ +2p2z∆χ − p/
(
2M2 + p2)+2p2 p2−M2

z∆χ

+ p/

(
M2− p2

)2

z2
∆χ

]
,

Ô6 = − 1
p2

[
p/z2

∆χ +2p2z∆χ −2M2 p/ −2p2 M2 + p2

z∆χ

+ p/
M4−3p2M2− (p2)2

z2
∆χ

]
,

Ô7 = − 1
p2

[
p/z2

∆χ +2p2z∆χ + p/
(

p2−M2)][z2
∆χ −2

(
M2 + p2)+ (M2− p2

)2

z2
∆χ

]
.

To implement the complex-mass renormalization scheme, in analogy to Ref. [6], we expand
the self-energy loop diagrams in powers of M, p/ − zχ , and p2− z2

χ , which all count as O(q). We
subtract those terms which violate the power counting.The subtraction terms at p/ = zχ read

Σ
ST
(a) = −

3g2
NR(m+ zχ)2

128π2F2zχ

[
(m− zχ)2B0

(
z2

χ ,0,m2
)
−A0

(
m2)]

+
3g2

NR(m+ zχ)M2

64π2F2z3
χ

[
−2m3 ln

m
µ
− iπm3 + z2

χm−32π
2z3

χλ

+
(

m3− z3
χ

)
ln

z2
χ −m2

µ2 + iπz3
χ

]
,

Σ
ST
(b) =

3g2
Rzχ

32π2F2 A0

(
z2

χ

)
−

3g2
RzχM2

32π2F2

[
32π

2
λ +2ln

zχ

µ
−1
]
,

Σ
ST
(c) = −

g2
∆R

288F2π2z2
∆χ

zχ

[
6(z∆χ − zχ)2(z∆χ + zχ)4B0

(
z2

χ ,0,z2
∆χ

)
+z2

χ

(
−3z4

∆χ +12zχz3
∆χ +4z2

χz2
∆χ −4z3

χz∆χ −2z4
χ

)
−6
(

z4
∆χ +2zχz3

∆χ − z2
χz2

∆χ +2z3
χz∆χ + z4

χ

)
A0

(
z2

∆χ

)]
+

g2
∆RM2

72π2F2z2
∆χ

z3
χ

[
−6iπz6

∆χ −6(2z∆χ +3zχ)z5
∆χ ln

z∆χ

µ
−9iπzχz5

∆χ +6z2
χz4

∆χ

+9z3
χz3

∆χ +3z4
χz2

∆χ −288π
2
λ z5

χz∆χ +9iπz5
χz∆χ + z6

χ −192π
2
λ z6

χ

+
(

6z6
∆χ +9zχz5

∆χ −9z5
χz∆χ −6z6

χ

)
ln

z2
χ − z2

∆χ

µ2 +6iπz6
χ

]
. (3.14)

The above expressions of Eq. (3.14) are exactly canceled by contributions of δ zχ and δc∗1. The
pole of the Roper propagator to third order is given by the expression

z = zχ −4c∗1M2 +
[
Σ(a) +Σ(b) +Σ(c)

]
p/=zχ

−Σ
ST
(a)−Σ

ST
(b)−Σ

ST
(c) . (3.15)

It is easily shown that the expansion of Eq. (3.15) satisfies the power counting, i.e. is of O(q3).

4. Summary

We have considered an effective field theory of resonances interacting with Goldstone bosons
using the complex-mass renormalization scheme. A systematic power counting emerging within
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this scheme allows one to calculate the physical quantities in powers of small parameters. As
an application we have calculated the pole masses and the widths of the ρ meson and the Roper
resonance which are of particular interest in the context of lattice extrapolations. The masses and
the widths in the chiral limit are considered as input parameters within this approach.
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