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1. Introduction

A successful theoretical approach to meson-baryon dynamics is provided by chiral unitary
methods, seee.g.[1–5]. In this framework the chiral effective Lagrangian isutilized to derive, for
example, the interaction kernel in a Bethe-Salpeter equation (BSE) which iterates meson-baryon
rescattering to infinite order. The BSE generates resonances dynamically, hence, without their
explicit inclusion the importance of resonances can be studied. Chiral unitary approaches have
been implemented quite successfully for photoproduction processes, seee.g.refs. [6–11], but as a
simplification only those diagrams were taken into account where the photon is absorbed first and
then the produced meson-baryon pair undergoes final state interaction. This simplified treatment
violates, in general, gauge invariance.
The main goal of the present contribution is the construction of a minimal approach to meson pho-
toproduction based on the chiral effective Lagrangian which is exactly unitary and gauge invariant.
The presented method fulfills these important requirementsfrom field theory, while at the same
time any subset of diagrams cannot be omitted as this would violate unitarity or gauge invariance.
In this first study, we restrict ourselves to the chiral effective Lagrangian at leading order.
This article is organized as follows. In the next section, the effective Lagrangian and the Bethe-
Salpeter formalism are introduced. The gauge invariant extension to photo- and electroproduction
processes is discussed in sect. 3. Section 4 contains the comparison with experimental data on kaon
photoproduction. We summarize our findings in sec. 5, where we will also give a brief outlook on
forthcoming work on this subject.

2. Bethe-Salpeter equation

The chiral effective Lagrangian incorporates symmetries and symmetry-breaking patterns of
QCD in a model-independent way, in particular chiral symmetry and its explicit breaking through
the finite quark masses. By expanding Green functions in powers of Goldstone boson masses and
small momenta a chiral counting scheme can be established. However, the strict perturbative chiral
expansion is only applicable at low energies, and it certainly fails in the vicinity of resonances.
In this respect, the combination of the chiral effective Lagrangian with non-perturbative schemes
based on coupled channels and the Bethe-Salpeter equation (BSE) have proven useful both in
the purely mesonic and in the meson-baryon sector [1–5]. Such approaches extend the range of
applicability of the chiral effective Lagrangian by implementing exact two-body unitarity in a non-
perturbative fashion and generating resonances dynamically.
Here we restrict ourselves to the meson-baryon Lagrangian at leading order,

L
(1)

φB = 〈B̄([i /D,B]−m0B)〉− D
2
〈B̄γµγ5{uµ ,B}〉− F

2
〈B̄γµγ5[uµ ,B]〉 , (2.1)

where the matrixB collects the ground state baryon octet. All the definitions employed here are
rather standard and can be found in [12]. In our numerical work, we use the coupling constants
D = 0.8,F = 0.46 [13] in the leading order meson-baryon Lagrangian. The meson decay constants
occuring inuµ will undergo a special treatment mentioned below.
By expanding the chiral connection in powers of the meson fields, one derives from the effective
Lagrangian the leading orderφ2B̄Bvertex (the so-called ‘Weinberg-Tomozawa’ (WT) term), which
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Figure 1: Graphical illustration of the BSE for meson-baryon scattering. The filled circle represents the full
scattering matrix and the open square the driving meson-baryon vertex.

we use as the driving term in our Bethe-Salpeter equation (φ denotes the ground state octet of meson
fields). One finds for the corresponding potentialV (which is the WT-vertex graph multiplied byi)

Vb j,ai(/q2
,/q1

) = gb j,ai(/q1
+/q2

) . (2.2)

Here,q1 andq2 are the four-momenta of the incoming and the outgoing meson,respectively, and
the coupling constants are summarized as a matrix in channelspace, with the entries

gb j,ai = − 1
4FjFi

〈λ b†[[λ j†,λ i ],λ a]〉 , (2.3)

whereλ a are the generators of theSU(3) Lie-Algebra in the physical (particle) basis. In this rep-
resentation, a double indexb j specifies a particular channel consisting of a baryonb and a meson
j. In the above expressions,ai specifies the channel of the incoming particles, whileb j labels the
outgoing meson-baryon state. Note that we use different values for the meson decay constantsFi

(where againi labels the meson in the corresponding channel), instead of the meson decay constant
in the chiral limit. In practice, these three constantsFπ ,FK ,Fη will be used as fit parameters, which
are allowed to vary in a reasonable range, to be specified in sec. 4. We refer to the latter section for
a discussion of this issue.
The baryon and the meson propagator,iSandi∆, are summarized as (diagonal) matrices in channel
space. We can now write down the integral equation for the meson-baryon scattering amplitude
Tb j,ai in a rather compact form (suppressing the channel indices, but remembering the matrix char-
acter of the various amplitudes):

T(/q2
,/q1

; p) = V(/q2
,/q1

)+
∫

ddl
(2π)d V(/q2

,/l )iS(/p−/l )∆(l)T(/l ,/q1
; p) . (2.4)

Here,p≡ p1 + q1 = p2 + q2 is the overall momentum, wherep1 and p2 are the four momenta of
the incoming and outgoing baryon, respectively. The BSE is illustrated in fig. 1. Note that we use
dimensional regularization throughout. The solution of the BSE is written out in detail in [12].
Even more details on the properties of the BSE and its solution can be found in [14]. We note in
passing that we do not set the external momenta occuring in the potentialV on the mass shell when
we iterate it in the BSE. In contrast, we evaluate all Feynmangraphs in the way dictated by the rules
of field theory. This will prove very convenient when we come to the implementation of gauge
invariance in the full (photoproduction) amplitude, whichthen becomes a rather straightforward
procedure as outlined below. The (off-shell) solution of the BSE has the form

T(/q2
,/q1

; p) = /q2/p/q1
T1(p)+/q2/q1

T2(p)+ /p/q1
T3(p)+/q2/pT4(p)+/q1

T5(p)

+/q2
T6(p)+ /pT7(p)+T8(p) . (2.5)
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The scalar coefficient functionsTn(p) are matrices in channel space, and depend only on the vari-
able p2. They will enter the calculation of the various photo- and electroproduction amplitudes
in the next section. To obtain the complete on-shell meson-baryon scattering amplitude, this ex-
pression has to be sandwiched between baryon spinors ¯u(p2) . . .u(p1). Two-body unitarity in the
space of meson-baryon channels is guaranteed by the fact that T is the solution of the BSE with
hermitian potential (interaction kernel)V. Our approach to photoproduction presented in the next
section will be such that unitarity is also satisfied when thephoton is coupled to the meson-baryon
bubble chain summed up by means of the BSE, using the method outlined in [15], and described
in the next section.

3. Photo- and electroproduction

The Bethe-Salpeter approach discussed in the last section (or the Lippmann-Schwinger equa-
tion in the non-relativistic framework) can be implementedin electroproduction processes of mesons
on the nucleon. In previous work, the electromagnetic mesonproduction on the nucleon was calcu-
lated at tree level and the produced meson-baryon pair was subject to final-state interactions [1,8].
As the photon does not couple to all intermediate states of the meson-baryon bubble chain, gauge
invariance is in general violated and must be restored via artificial manipulations. Therefore it
seems desirable to develop a formalism which implements theprinciples of gauge invariance and
unitarity in a most natural and straightforward manner. We follow here the path which we have al-
ready outlined in [15] in rather general terms, for the case of a photon coupling to a meson-baryon
scattering amplitude. In this work, we shall be more explicit in evaluating the contributions to
the various amplitudes in question. Our approach for constructing a unitary and gauge invariant
electroproduction amplitude decomposes into two major steps:

(1) Fix the hadronic part of the amplitude by making use of a BSE to implement exact two-body
unitarity.

(2) Couple the photon to the ‘hadronic skeleton’ constructed in step (1) wherever possible,i.e.
to all external and internal lines describing the propagation of the involved particles as well
as to (momentum-dependent) vertices.

The procedure of step (2), which is the most natural way to guarantee gauge invariance of the
amplitude, leads to contributions that were usually not considered in chiral unitary approaches
involving electromagnetic interactions. The importance of these additional contributions which
render the electroproduction amplitude gauge invariant can also be quantified within the scheme
utilized here.
The leading order (tree level)̄BφB amplitude is easily derived from the leading order Lagrangian
of eq. (2.1). Employing this vertex insertion, and the meson-baryon scattering amplitude derived
from the BSE, we can construct the ’hadronic skeleton’ mentioned above, and illustrated in fig. (2).
In order to complete step (1), we still have to specify which meson-baryon channels contribute
in the framework of our electroproduction model. In this first study, we choose to consider only
the ground-state octets of mesons and baryons, respectively. Moreover, from the topology of the
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Figure 2: The dressed meson-baryon vertex in our model amplitude. Thefilled circle (open square) denotes
the full (tree level) meson-baryon interaction.
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Figure 3: Classes of diagrams for kaon production off the nucleon in the approximation utilized here.

hadronic part of the Feynman graph in fig. 2 we can conclude that the meson-baryon pairs must
have the charge and strangeness quantum numbers of the proton. This limits the number of channels
to six:

pπ0, nπ+, pη , ΛK+, Σ0K+, Σ+K0 . (3.1)

The limitation to these channels can only occur because our amplitude is not crossing-symmetric,
otherwise more channels with different quantum numbers must be considered. The violation of
crossing-symmetry is a drawback of the BSE method which we use to iterate the rescattering
graphs.
By now, we have finished the first part (step (1)) of our program. Our next task is to couple the
photon to the hadronic part of the amplitude in a gauge-invariant fashion. Inserting the photon
coupling at every possible place leads to the set of diagramsdisplayed in fig. 3. Again, explicit
expressions for all those Feynman graphs are given in [12].

Having finished the construction of the electroproduction amplitude, we return to the issue of
unitarity. The crucial observation here is that every electroproduction amplitudeM µ(q,k; p) which
may be written as (see also fig. 4)

M
µ(q,k; p) = M

µ
0 (q,k; p)+

∫
ddl

(2π)d T (q, l ; p)iS(/p−/l )∆(l)M µ
0 (l ,k; p) (3.2)
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Figure 4: Illustration of the integral equation (3.2) satisfied by ourelectroproduction amplitude.

obeys the requirement of two-body unitarity in the subspaceof meson-baryon channels. Here,T

is an amplitude for meson-baryon scattering that solves a BSE of the type of eq. (2.4) andM µ
0

is a real kernel. The proof proceeds in close analogy to the one presented in sec. 5 of [15]. It
is straightforward to convince oneself that our model amplitude is of the form described by the
foregoing equation. We also have to show that the sumM µ of the specified graphs is gauge
invariant by provingk ·M = 0 for on-shell mesons and baryons. Although this might be obvious
from our construction, we have included an explicit proof ofthis statement in [12].

4. Results

Using our model amplitude, we have performed an overallχ2 fit to available photoproduction
and pion-induced data on the proton near the respective thresholds. In more detail, we fit the dif-
ferential cross sections for photoproduction on the protoninto theK+Λ, K+Σ0, K0Σ+ final states
as well as ofπ−p→ K0Λ, K0Σ0. Inspection of the differential cross sections reveals that already
at moderate energies away from thresholdp- andd-waves become increasingly important. Since
our approach, which is based on the Weinberg-Tomozawa interaction kernel, generates mainlys-
waves (with the exception of the t-channel exchange graph C in fig. 3) and thus does not provide
a realistic description for higher partial waves, we expectit to be valid only in the near-threshold
regions. We have thus restricted our fits to energy values forwhich the differential cross sections
are dominated bys-waves,i.e.center-of-mass energies of about 1.80 GeV corresponding tophoton
lab momenta of about 1.25 GeV or pion lab momenta of about 1.23GeV. Still, we will be able to
extract interesting information from such investigations, in particular, we can study in detail the
commonly appearing approximations made in the literature as already mentioned in the introduc-
tion. The free parameters in our approach are, on the one hand, the three meson decay constants
Fπ , FK , Fη which we vary separately within realistic bounds, as the SU(3) symmetry-breaking dif-
ferences between them are beyond our working precision of the effective potential. More precisely,
SU(3) symmetry breaking is generated by various higher order terms in the meson-baryon (meson)
Lagrangian starting at chiral order two (four). Since thesecontributions are not included in the
leading order WT kernel, we simulate such effects by allowing variations in the various meson
decays constants. This, of course, will no longer be done when the higher order terms in the inter-
action kernel have been included. One observes that the fitted decay constants tend to larger values
reducing the strength of the Weinberg-Tomozawa interaction. This is consistent with findings in
earlier chiral unitary studies,i.e. the WT interaction in many cases produces too strongs-waves,
seee.g.[8]. We allowFπ ,FK , andFη to vary between 70 MeV and 150 MeV. On the other hand, we
fit the four different isospin-symmetric scalesµ in the loop integrals. For the best fits their values
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are roughly in accordance with thenatural sizeestimate of ref. [2] (although most of them turn out
to be somewhat large).
We have included in our fit data on differential cross sections of the photoproduction processes
γ p→ K+Λ, K+Σ0, K0Σ+. Some results are displayed in figs. 5 and 6, respectively. A few remarks
are in order: The SAPHIR and CLAS data on charged kaon photoproduction show some inconsis-
tencies at forward angles, but this can not be resolved within the approximations made here. Also,
the very different shape of the differential cross sectionsfor theK+Λ andK+Σ0 final states can be
traced back to the isospin selectivity of theΛ, see also ref. [16].

To summarize, the results presented here show a reasonable agreement with data on photon-
and pion-induced reactions close to threshold, but more realistic interaction kernels and higher par-
tial waves are required to obtain better agreement with data, in particular away from threshold. This
is however beyond the scope of the present investigation. Wehave also examined gauge invariance
violations encountered in previous chiral unitary approaches which only took a subset of the dia-
grams in fig. 3 into account. One clearly observes that violations of gauge invariance are sizable,
although this effect could, in principle, be concealed numerically by readjusting the parameters of
the approach. This indicates that the additional contributions which render the photoproduction
amplitudes gauge invariant and were omitted in previous work are not negligible and must be taken
into account.
In order to be able to compare our results with previous chiral unitary approaches we have also
worked in the approximations employed in these investigations, seee.g. [8]. One notes that the
effects of these approximations can indeed be sizable. Again, by a suitable parameter refitting
one might be able to describe the total cross sections, but given the more sophisticated scheme
developed here, such approximations are no longer necessary.

5. Outlook

The present analysis of kaon photoproduction only made use of the minimal form of an ampli-
tude subject to the constraints of two-body (coupled channel) unitarity and gauge-invariance. As
expected, we could not produce a perfect fit to all the available experimental data, but nonetheless
the result was encouraging, and it seems worthwile to work onimprovements of the minimal ansatz
for the amplitude. The most important building block is the amplitude for meson-baryon scatter-
ing, given by the solution of a BSE with a given kernel. So far,this kernel was given only by the
Weinberg-Tomozawa term, and it is not surprising that our description of meson-baryon scattering
is not yet satisfactory in most channels. It is straightforward (though still requiring quite some
amount of work) to implement higher-order contact terms from the next-to-leading order meson-
baryon Lagrangian in the kernel (of course, this will also lead to additional photon-couplings by the
minimal substitution rule). In principle, also the leadingorder Born graphs will have to be included
in the meson-baryon potential. Work in this direction is currently under way.
Having achieved a suitable extension of the meson-baryon scattering amplitude, the photoproduc-
tion amplitude can be worked out along the lines displayed pictorially in figs. 2 and 3. Furthermore,
the coupling of the photon to the mesons and baryons will haveto be supplemented with higher-
order terms, like e.g. couplings proportional toσ µνFµν . We are confident that refined versions
of the model amplitude presented in this contribution will produce sensible results in the near-
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Figure 5: Differential cross sections forγ p→ K+Λ compared to data from [17]. The number in each plot
denotes the respective c.m. energy
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threshold regions, and will yield an important contribution to the theoretical understanding of the
very complicated process of low-energy kaon photoproduction.
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