
P
o
S
(
C
D
0
9
)
0
6
4

Subtractive renormalization of chiral effective theory
NN potentials up to next-to-next-to-leading order
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We have developed a subtractive renormalization method with which we can evaluate nucleon-
nucleon (NN) scattering phase shifts produced by the NN potential obtained at leading, next-
to-leading, and next-to-next-to-leading order (NNLO) in chiral effective theory (χET). In this
method the low-energy constants associated with short-distance NN physics are eliminated from
the Lippmann-Schwinger equation (LSE) for the NN t-matrix,in favor of physical observables.
This allows us to straightforwardly compute scattering phase shifts for ultra-violet cutoffs of at
least 10 GeV. We then perform detailed analyses of the maximum cutoff at which the use of a
χET NN potential in the LSE makes sense.
Specifically, we show that:
(a) our subtractive renormalization technique reproducesknown results for the LO potential, in
both S- and P-waves;
(b) a parameterization of short-distance physics in the NNLO potential in terms of an energy-
dependent contact term creates scattering resonances and shallow bound states in S-wave channels
once cutoffs larger than 1 GeV are considered;
(c) the more conventional momentum-dependent contact termin the NNLO potential has prob-
lems of its own at cutoffs larger than 1 GeV;
(d) the NNLO potential yields P-wave phase shifts that have significant dependence on renormal-
ization point.
(e) for cutoffs smaller than 1 GeV, using spectral-functionregularization for the long-distance part
of the potential produces results that vary with the cutoff and depend on the renormalization point
less than if dimensional regularization is employed to compute the two-pion-exchange graphs.

Based on all these results we conclude that, once cutoffs larger than the chiral-symmetry breaking

scale are employed, iteration of the two-pion-exchange piece of theχET NN potential in the LSE

does not satisfy all of the criteria required for successfulrenormalization of the problem.
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1. Introduction

Chiral perturbation theory (χPT) is an effective field theory (EFT) that enables calculation
in the non-perturbative region of QCD. The use of EFT in nuclear systems conveys two major
advantages. First, we gain physical insight into the behavior of the strong interaction at large
distances, which is difficult to calculateab initio from QCD. Second, our calculations become more
accurate order by order, thus allowing systematic error control. An EFT becomes most powerful
when a clear and large seperation between the low- and high-energy scale in the problem is possible.
It has been shown thatχPT is quite successful in the low-energy (< 1 GeV) mesonic sector. In
principle, the same theory should work in the low-energy nucleon-nucleon (NN) sector as well.

However, it has been almost two decades sinceχPT was first applied to the problem of NN
system[1], and difficulties still remain. StandardχPT power counting, which would predict no
bound state for the deuteron, does not apply to the NN problem, because of infrared enhancements
of the NN interaction. A nonperturbative treatment of at least part of the NN interaction is thus a
necessary ingredient. One needs to either iterate the NN potential computed fromχPT using the
Lippmann-Schwinger equation (LSE) [2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19],
or determine which part of the potential can be treated in perturbation theory [20, 22, 22, 23, 24,
25, 26, 27]. So far there is no consensus as to which of these two alternatives is superior.

Here, we adopt the former approach. In this “chiral effective theory" (χET) the behavior of the
χPT potential at high momentum necessitates that a cutoffΛ be placed on the momenta in the LSE.
It is then natural to ask what values ofΛ can be used, if renormalization is to be successfully carried
out. Difficulties in answering this question have both a technical part, i.e. it is hard to perform a
fit for all unknown low energy constants at high cutoffs because of “fine-tuning”; and conceptual
problems regarding what a successful renormalization is, e.g. is it sufficient that observables be
(approximately) cutoff-independent? (See, e.g., Ref.[28], for a recent discussion.)

In Sec. 2 we outline a subtractive renormalization technique that solves the “fine-tuning” prob-
lem. This technique thus allows us to assess how wellχET at large cutoffs satisfies criteria for
successful renormalization. We have used subtractive renormalization to calculate the NN scatter-
ing amplitude obtained by using leading-order (LO), next-to-leading-order (NLO), and NNLOχPT
NN potentials in the LSE, for cutoffs up toΛ = 19 GeV. We show some results of these calculations
in Sec. 3, and examine the conditions under whichχET is really improved, order by order, after
renormalization. We do this for both the dimensionally-regularized (DR) and spectral-function-
regularized (SFR) [29]χPT potentials, and consider both energy and momentum-dependent con-
tact terms. More details regarding all these methods and results can be found in Refs. [30, 31, 32].

2. Main ideas of subtractive renormalization

The main idea of our subtraction method is to construct the fully off-shell partial-wavet-matrix
from the knowledge of the long-range part of the potential and the on-shell value of thet-matrix
for zero energy [30, 31, 32, 33, 34]. The partial-wave LSE is given by

tl′l(p′, p;E) = vl′l(p′, p)+∑
l′′

2
π

M
∫ Λ

0

d p′′ p′′2 vl′l′′(p′, p′′) tl′′l(p′′, p;E)

p2
0 + iε − p′′2

. (2.1)
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Where p2
0/M = E is the center-of-momentum (c.m.) energy andΛ the cutoff parameter. The

incoming (outgoing) angular momenta are indicated byl (l′). The potentials are defined as:

vl′l(p′, p) = vLR
l′l (p′, p)+Cl′l p′l

′

pl f (p, p′;E), (2.2)

wherep(p′) indicates the incoming (outgoing) momentum in the c.m. frame,vLR
l′l is the long-range

potential that is operative in this channel.Cl′l p′l
′

pl f represents the contact interaction, wheref can
be energy or momentum-dependent. First we consider the casef = 1, which is the simplest contact
term in a given partial wave. To relate thet-matrix to a physical quantity, a generalized scattering
length for arbitrary angular momental andl′ can be defined as [35]αl′l

M = limk→0
tl′ l(k,k;E)

kl′+l , where
for l′ = l = 0 the usual definition,α00

M = t00(0,0;0), is obtained. Dividing the partial-wave LSE,
Eq. (2.1), byp′l

′

pl we obtain

tSJ
l′l (p′, p;E)

p′l′ pl =
vSJ

l′l (p′, p)

p′l′ pl +∑
l′′

2
π

M
p′l′ pl

∫ Λ

0

d p′′ p′′2 vSJ
l′l′′(p′, p′′) tSJ

l′′l(p′′, p;E)

p2
0 + iε − p′′2

. (2.3)

SincevLR
l′l (p′, p) ∼ p′l

′

pl, Eq. (2.3) is general and can be applied to any partial wave.
In the following we concentrate on P-waves (l = l′ = 1). (The corresponding argument for S-

waves, in the case that we have the standard LO contact interaction ofχPT with l = l′ = 0, f = 1, is
analogous, but more straightforward, as division by a factor of p′k is not necessary there.) Consider
the half-shell and on-shellt-matrices atE = 0:

lim
k→0

[
tl′l(p′,k;0)

p′k

]
= lim

k→0

[
vLR

l′l (p′,k)

p′k
+Cl′l

]

+ ∑
l′′

2
π

M lim
k→0

[
1

p′k

∫ Λ

0

d p′′ p′′2 (vLR
l′l′′(p′, p′′)+Cl′l′′ p′p′′) tl′′l(p′′,0;0)

−p′′2

]
(2.4)

lim
k→0

[
tl′l(k,k;0)

kk

]
= lim

k→0

[
vLR

l′l (k,k)

kk
+Cl′l

]

+ ∑
l′′

2
π

M lim
k→0

[
1
kk

∫ Λ

0

d p′′ p′′2 (vLR
l′ l′′(k, p′′)+Cl′l′′kp′′) tl′′l(p′′,0;0)

−p′′2

]
. (2.5)

Subtracting Eq. (2.5) from Eq. (2.4) and multiplying both sides byp′ cancels the unknownCl′l:

lim
k→0

[
tl′l(p′,k;0)

k

]
=

α11

M
p′ + lim

k→0

[
vLR

l′l (p′,k)

k

]
− p′ lim

k→0

[
vLR

l′l (k,k)

k2

]

− ∑
l′′

2
π

M
∫ Λ

0
d p′′

[
vLR

l′l′′(p′, p′′)− lim
k→0

[
vLR

l′ l′′(k, p′′)

k
]p′
]

lim
k→0

[
tl′′l(p′′,k;0)

k
].(2.6)

Here we have used that for P-waves limk→0

[
t11(k,k;0)

kk

]
= α11

M . The above limits are well-defined.

The only unknown in Eq. (2.6) is limk→0

[
tl′ l(p′,k;0)

k

]
, which can be solved by standard techniques.

The next step is to apply the same idea again to obtaintl′ l(p,p′;0)
p and hence,tl′l(p, p′;0). We

then proceed to calculate the on-shellt-matrix and the phase shifts using resolvent identities that
connect the operatort(E) to the operatort(0). Those details are laid out in Refs. [34, 30, 38, 39].

Next, we consider an energy-dependent contact term in S-waves. We takefC00 = λ +γE. This
is the contact term up to NLO and NNLO inχET for the1S0 channel. To simplify the presentation,
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we adopt the following operator notation for the LSE

t(E) = λ + γE + vLR +[λ + γE + vLR] g0(E) t(E), (2.7)

whereg0(E) is the free resolvent of the LSE. SettingE = 0 in Eq. (2.7) leads tot(0) = λ + vLR +

[λ + vLR] g0(0) t(0), which contains only one unknown,λ . Therefore, the matrix elementt(p′, p;0)

can be obtained from one experimental datum, here the NN scattering lengtha0. After applying the
same idea to obtaint(E∗) from the phase shifts at an arbitrary energy, and using properties of the
LSE to eliminateγ , we have

t(E)+ t(0)[g0(0)−g0(E)]t(E)+
E
E∗

{
t(0)− [1+ t(0)g0(0)]αt(E∗)

}
g0(E)t(E)

=

(
1−

E
E∗

)
t(0)+

E
E∗

[
1+ t(0)g0(0)

]
αt(E∗), (2.8)

whereα ≡ [1+ t(E∗)g0(E∗)]−1. With t(0) andt(E∗) known, Eq. (2.8) is an equation fort(E) and
can be solved by standard methods with detail given in Ref. [32].

Finally, for (more complicated) contact terms such as

(A) λ +C2(p2 + p′2); (B)

(
λ +C2(p2 + p′2) λt p′2

λt p2 0

)
; (C)

(
λ + γE λt p′2

λt p2 0

)
,

we can solve the problem by combining the above methods, i.e., use the first subtraction to elim-
inate λ , and then relatet(E∗) to t(E). For coupled channels, we can apply the idea of dividing
p′l

′

pl in LSE to eliminateλt p2. However, in the case of the momentum-dependent S-wave contact
terms, we need to perform one fitting to eliminate the unknownconstantC2. The inputs needed are:

for case (A);a0, and an additional data to perform the fitting;
for case (B);a0, α20, and an additional data to perform the fitting; and
for case (C);a0, α20 and phase shift at an arbitrary energyδ (E∗). 1

3. Results and discussion

In this section we present our results in P-waves and S-wavesto demonstrate the following:
(1). Our subtractive renormalization scheme generates results equivalent to the conventional

“fitting” method, with a direct input of physical observables.
(2). The energy-dependent contact term produces phase shifts that oscillate with respect toΛ.
(3). Whether a contact term (or contact terms) is needed for acutoff independent result is

exactly determined by the (coordinate-space) singularitystructure of the potential asr → 0.
(4). Cutoff independence in the phase shift does not neccessarily mean the results are renormalization-

point independent. Both properties are necessary conditions for successful renormalization.
(5). In general, there is a highest cutoffΛc ≈ 1 (2) GeV in the LSE one can adopt for the

NNLO DR (SFR) TPE, before the results start to exhibit problems.
To show point (1), we compare the LO S-wave phase shift obtained from the conventional

“fitting” method to our subtractive scheme in the left-hand side of Fig. 1. Here the potential is
the one-pion-exchange (OPE) plus a constant contact term. Fig. 1 shows that the results obtained

1The only restriction onE∗ is that it must be within the domain of validity of our theory.
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Figure 1: (Color online) The comparison of two renormalization methods for the lowest NN1S0 & 3S1-3D1

phase shifts (left two panels) and the bound-state wavefunctions (right two panels).ψ0(p) (u(r)) is the3S1

wavefunction andψ2(p) (w(r)) denotes the3D1 wave in momentum (coordinate) space. HereΛ = 50 GeV
is used. The dotted lines indicate the corresponding results obtained with the CD-Bonn potential [40].

by these two methods agree with each other within a relative difference of 2%. (Due to numerical
effects this difference is amplified inε1. ε1 is well known for its sensitivity of the value of the
unknown constant in the contact term, and we only adjusteda0 up to certain precision when per-
forming the “fitting” method.) We have verified that the off-shell t-matrices we obtain also agree
with those obtained from the conventional “fitting” method to the same accuracy. Therefore, our
subtraction method is as valid as the conventional fitting method. Our method can be applied to
bound-state calculations too. The right-hand side of Fig. 1shows deuteron wavefunctions obtained
from our subtractive method, which are quite close to those obtained from the CD-Bonn potential.
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Figure 2: The1S0 NN phase shift atTlab = 10

(upper panel) and 100 (lower panel) MeV as a

function of Λ. The results are obtained using

the DR NNLO TPE with an energy-dependent

contact term via our subtractive renormaliza-

tion.

For point (2), we associate the DR NNLO TPE with the energy-dependent contact term and
plot the1S0 phase shifts versusΛ in Fig. 2. The phase shifts show an oscillatory behvaior as a
function of Λ. A similar oscillatory feature is observed in the3S1 −

3D1 channel. (We usea0,
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1P1
3P0

3P1
3P2

OPE U R U R
NLO (DR) U U R R
NNLO (DR) R R R *
NLO (DR) + NNLO (SFR) U U R R
NNLO (SFR) U U R R

Table I: Singularity structure of the

long-range potentialsvLR
11. Here “U"

(“R") means thatvLR
11 is repulsive (at-

tractive) atr → 0. The * indicates that

both eigenpotentials in the3P2 −
3F2

channel are attractive.
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Figure 3: (Color online) The un-renormalized v.s. renormalized NN P-wave phase shifts atTlab = 10 MeV

(un-renormalized) and 100 MeV (renormalized) as a functionof Λ for variousχPT potentials: DR NLO,

black dotted line; DR NNLO, red dashed line; SFR NNLO, solid green line. For the renormalized case,

the inputαSJ
11 were adjusted at each cutoff to give the best fit to the Nijmegen analysis [36] in the region

Tlab < 100 MeV.

δ (E∗) andα20 (for the triplet) as the input to generate the results withE∗ = 1.4 (10) MeV for the
singlet (triplet) channel.) This phenomenon is caused by the resonance state created by the energy-
dependent potential. We emphasise that the first place wherethe phase shifts diverge is at cutoff
Λ ≈ 1 (1.2) GeV for the singlet (triplet) channel.

(3) involves the short distance (r → 0) behavior ofvLR
l′l in the coordinate space. We calculate

ther → 0 behavior analytically for various P-waves potentials andlist them in Table I. At the same
time, we plot the un-renormalized v.s. renormalized phase shifts atTlab = 10 (100) MeV for TPE
up to DR NLO, DR NNLO and the SFR TPE up to NNLO in Fig. 3. (Here, and throughout
this paper, we adopt an intrinsic cutoff̃Λ = 800 MeV for the SFR TPE.) For the renormalized
cases, the contact term has the formCSJ

l′l p′l
′

pl. Comparing the un-renormalized v.s. renormalized
case indicates whether a contact term is needed for the phaseshift to be stable with respect toΛ.
This is exactly determined by ther → 0 structure listed in Table I. If the potential is singular and
attractive forr → 0 (denoted as“R” in Table I), then the contact term is required. If it is not (“U”
in Table I) then the phase shifts will have a stableΛ → ∞ limit even in the absence of a contact
term (see also Refs. [17, 18, 37]). The3P2−

3F2 channel for DR NNLO is a special case, since
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the coupled-channels potential has two attractive singular eigenpotentials in ther → 0 limit, and so
one subtraction is not sufficient to make phase shifts independent ofΛ in this channel.
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Figure 4: (Color online) The1S0 NN

phase shift as a function of the lab. ki-

netic energy for variousΛ. The results

are obtained with the DR (left two pan-

els) or SFR TPE (right two panels) up to

NNLO with momentum-dependent con-

tact terms. We usea0 = −23.7 fm as in-

put and then perform a fit to either the

effective ranger0 = 2.7 fm (solid black

line) or the phase shift atTlab = 200 MeV

(dashed red line). The phase shifts [36]

are denoted by open triangles.

(4) To see why a cutoff-independent result in the phase shiftis not neccessarily renormalization-
point-independent, we plot the1S0 phase shift obtained with the DR and SFR NNLO TPE along
with the momentum-dependent contact term (denoted as case (A) at the end of the previous section)
in Fig. 4. As mentioned before, in this case we perform the renormalization by the one-subtraction-
plus-one-fitting procedure. The results obtained by fittingto the effective rangero or to the phase
shift at Tlab = 200 MeV are shown. One can see that the two different fit procedures generate
different results for the sameΛ. This is especially visible atΛ = 500 and 1000 MeV for the DR
NNLO TPE, where a resonance-like behavior is present in the latter case whenC2 is fitted tor0.
For values ofΛ not close to these problematic cutoffs the phase shift is almost independent of the
renormalization point. In contrast, for the SFR TPE, the twodifferent fitting procedures lead to
almost the same phase shift forΛ between 700− 1800 MeV. By switching to the SFR TPE, we
achieve renormalization-point-independence for a wider range ofΛ.
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Figure 5: (Color online) The best fit for

the NN 3S1−
3D1 phase shifts as a function

of the laboratory kinetic energy for different

cutoffsΛ ranging from 0.6 to 1 GeV. The po-

tentials employed are the SFR NNLO with

a momentum-dependent central part of the

contact term. The values of the Nijmegen

phase-shifts [36] are indicated by the open

triangles.

Finally, for point (5), we plot the3S1−
3D1 phase shifts in Fig. 5. These results are obtained

by the SFR or DR TPE up to NNLO plus the momentum-dependent contact term (labeled as (C)
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in the previous section). For the DR TPE case, the best overall fit already diverges away from
the Nijmegen analysis in the mixing angle atΛ = 1000 MeV. This implies that there is a critical
cutoff Λc ∼ 1 GeV. Above that we cannot iterate DR NNLO TPE in LSE and obtaine a good
fit in the 3S1−

3D1 channel. Moreover, as shown in Fig. 4, at thisΛc the renormalization-point-
independence also breaks down for the DR NNLO TPE in the1S0 channel. Therefore, we conclude
that for the DR TPE in S-waves, the highest cutoff one can adopt in the LSE isΛc ∼ 1 GeV. For
the P-waves, a detail analysis of the renormalization-point-dependence suggests thatΛc ∼ 1−1.2
GeV for the DR NNLO TPE[31]. As with the S-waves, if the SFR TPEis adopted, thenΛc can be
extented to 2 GeV before similar problems appear.

4. Summary and Conclusions

We developed a subtractive renormalization scheme forχET NN potentials which allows us to
go to an arbitrarily high cutoff in the LSE. Our calculationsshow that the energy-dependent contact
term creates scattering resonances and shallow bound states in S-wave channels once cutoffs larger
than 1 GeV are considered. Momentum-dependent contact terms in the NNLO potential also has
problems at these cutoffs. We also investigate the singularity structure of the potential and find that
the LO conclusion presented in Ref.[15] holds up to NNLO. Ouranalysis in S-waves and P-waves
shows that the two-pion-exchange potential should not be inserted in the Lippmann-Schwinger
equation and treated non-perturbatively if cutoffs largerthan 1 GeV are employed.
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