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In complete analogy to chiral perturbation theory, systematic low-energy effective theories can be

used to describe the lightly doped antiferromagnetic precursors of high-temperature superconduc-

tors. The spinwaves or magnons are the Goldstone bosons of the spontaneously brokenSU(2)s

symmetry. The comparison of analytic effective field theoryresults at the two-loop level and

Monte Carlo data obtained with a very efficient cluster algorithm leads to a determination of the

leading low-energy parameters with permille accuracy. While magnons are analogous to the pions

in QCD, doped holes in an antiferromagnet are analogous to the nucleons. Flavor quantum num-

bers of doped holes emerge from non-trivial positions of thehole pockets in the Brillouin zone.

Magnon-exchange leads to the formation of two-hole bound states analogous to the deuteron, and

spiral phases of the staggered magnetization are a condensed matter analog of pion condensation

in nuclear matter.
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Effective Theories for Magnetic Systems

1. Introduction

To a large extent, the success of theoretical physics is based on the concept of effective theo-
ries. In particular, there is no need to know the “theory of everything” before one can address the
physics at a particular energy scale. Once the relevant degrees of freedom have been identified, and
symmetry considerations are taken into account, the locality of space and time allows us to con-
struct a systematic low-energy effective theory. This has been demonstrated in great detail in chiral
perturbation theory — the systematic low-energy effectivefield theory description of the strong
interaction. Chiral perturbation theory was originally developed for the lightest strongly interact-
ing particles — the pseudo-Goldstone pions of the spontaneously brokenSU(2)L ×SU(2)R chiral
symmetry of QCD [1, 2]. It was then extended to baryon chiral perturbation theory [3–6] which
includes the nucleons as the lightest particles in the sector with baryon number one. Systematic
effective theories have also been developed for few nucleonsystems [7–10]. Thanks to asymptotic
freedom, the fundamental QCD theory underlying all these effective theories is well-defined at ar-
bitrarily high energy scales, and can hence be considered asthe “theory of everything about the
strong interaction”.1 Given the value of the strong coupling constant as well as thequark masses
(at some energy scale), QCD makes unique predictions for allprocesses of the strong interactions.
The same physics is described by the corresponding effective theories, order by order in a system-
atic low-energy expansion. The effective theories containa large number of a priori undetermined
low-energy parameters. Matching these parameters to the underlying QCD theory is an important
incentive of lattice QCD, the nonperturbative first principles approach to the underlying fundamen-
tal theory itself. Although lattice QCD will eventually undoubtedly solve QCD with high precision,
the corresponding systematic low-energy effective theories will always remain extremely valuable
because they add tremendous analytic understanding to the numbers produced by lattice QCD. The
strong interactions provide a perfect example for how the interplay between the underlying funda-
mental theory and the corresponding low-energy effective theories can advance our understanding
of non-trivial dynamical phenomena.

Highly non-trivial dynamics is at work also in condensed matter physics. In particular, under-
standing high-temperature superconductivity [11] remains one of the greatest challenges in con-
densed matter physics. Unlike in particle physics, there isno general agreement about what the
underlying “theory of everything about high-temperature superconductivity” should be. Still, most
experts agree that some variant of the Hubbard ort-J model should capture the relevant microscopic
physics. Just like solving lattice QCD, it is a tremendous numerical and algorithmic challenge to
solve these microscopic models addressing high-temperature superconductivity. In particular, at
non-zero doping (which is analogous to non-zero baryon density in QCD) numerical simulations
suffer from very severe sign problems. Even the lightly doped antiferromagnetic precursors of
high-temperature superconductors possess a highly non-trivial dynamics and pose great theoretical
challenges. Using a variety of experimental and theoretical methods, a lot has been learned about
these systems. In particular, at zero doping the relevant degrees of freedom are the magnon Gold-
stone bosons of theSU(2)s symmetry, which is spontaneously broken to aU(1)s subgroup by the
formation of the staggered magnetization order parameter characteristic for antiferromagnetism. In
complete analogy to pion chiral perturbation theory, systematic low-energy effective field theories

1Obviously, QCD is embedded in the Standard model, which — dueto its triviality — is only an effective theory.
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QCD Antiferromagnetism

broken phase hadronic vacuum antiferromagnetic phase

global symmetry chiral symmetry spin rotations

symmetry groupG SU(2)L ×SU(2)R SU(2)s

unbroken subgroupH SU(2)L=R U(1)s

Goldstone boson pion magnon

Goldstone field inG/H U(x) ∈ SU(2) ~e(x) ∈ S2

order parameter chiral condensate staggered magnetizationMs

coupling strength pion decay constant spin stiffnessρs

propagation speed velocity of light spinwave velocityc

conserved charge baryon numberU(1)B electric chargeU(1)Q

charged particle nucleon or antinucleon electron or hole

long-range force pion exchange magnon exchange

inhomogeneous phase spiral phase pion condensate

dense phase nuclear or quark matter high-Tc superconductor

microscopic description lattice QCD Hubbard ort-J model

effective description chiral perturbation magnon effective
of Goldstone bosons theory theory

effective description baryon chiral magnon-hole
of charged fields perturbation theory effective theory

Table 1: Some analogies between QCD and antiferromagnetism.

have been developed for magnons both in ferro- and in antiferromagnets [12–19]. In fact, thanks to
the interplay between analytic calculations in effective field theory and accurate numerical simula-
tions [20, 21], the undoped antiferromagnetic precursors of high-temperature superconductors like
La2CuO4 and Sr2CuO2Cl2 are among the quantitatively best understood condensed matter systems.

At low doping, in addition to the magnons, doped holes enter as relevant low-energy degrees
of freedom. The dynamics of doped holes has also been addressed with effective theories [22–25].
However, there has been no agreement on important issues including the transformation rules of the
hole fields under the various symmetries. In complete analogy to baryon chiral perturbation theory,
and based on experimental and numerical results [26, 27] forthe underlying microscopic systems,
fully systematic low-energy effective field theories for lightly doped antiferromagnets have been
constructed in [28–33]. Several of these theories will be discussed below. Some analogies between
QCD and antiferromagnetism are listed in table 1.

2. Undoped Antiferromagnets

In this section we discuss effective theories for undoped antiferromagnets. A concrete under-
lying microscopic system is the quantum Heisenberg model with the Hamiltonian

H = J∑
x,i

~Sx ·~Sx+î , [Sa
x,S

b
y] = iδxyεabcS

c
x. (2.1)
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Herex denotes sites on a 2-dimensional bipartite (e.g. square or honeycomb) lattice with spacinga,
andî is a vector of lengtha in a lattice direction. The spin12 operators~Sx obey the standardSU(2)s

commutation relations. Note that we work in natural units inwhich h̄ = 1. The Hamiltonian
commutes with the total spin~S= ∑x

~Sx and is thus invariant underSU(2)s spin rotations. As
one has learned from detailed numerical simulations, at zero temperature theSU(2)s symmetry is
spontaneously broken down to aU(1)s subgroup, both on a square and on a honeycomb lattice.

The corresponding low-energy effective field theory is formulated in terms of the staggered
magnetization order parameter field

~e(x) = (e1(x),e2(x),e3(x)) ∈ S2, ~e(x)2 = 1, (2.2)

which takes values in the coset spaceSU(2)s/U(1)s = S2. Herex= (x1,x2, t) is a point in Euclidean
space-time. The leading terms in the effective action for the staggered magnetization field take the
form

S[~e] =
∫

d2x dt
ρs

2

(
∂i~e·∂i~e+

1
c2 ∂t~e·∂t~e

)
(2.3)

whereρs is the spin stiffness. Antiferromagnetic magnons have a “relativistic” dispersion relation
with the spinwave velocityc playing the role of the velocity of light. It should be pointed out that
Euclidean rotation invariance is just an accidental symmetry of the leading terms of the effective
action.

It is interesting to note that the ferromagnetic quantum Heisenberg model (which differs from
the antiferromagnet only by the sign of the Hamiltonian) hasrather different symmetry properties at
low energies. Unlike quantum antiferromagnets, quantum ferromagnets have a conserved order pa-
rameter — the uniform magnetization. Consequently, ferromagnetic magnons have a nonrelativis-
tic dispersion relation and the corresponding effective action contains an additional Wess-Zumino
term [18], which breaks rotation invariance between space and Euclidean time already at leading
order. The resulting effective field theory for ferromagnetic magnons has been studied in [18, 19].

2.1 Determination of the Low-Energy Parameters in the Cubic ε-Regime

Hasenfratz and Niedermayer have used the effective theory to derive the finite-size and finite-
temperature effects of the staggered susceptibility

χs =
M 2

s L2β
3

{
1+2

c
ρsLl

β1(l)+

(
c

ρsLl

)2[
β1(l)

2 +3β2(l)
]
+O

(
1
L3

)}
(2.4)

from a 2-loop calculation in theε-regime of magnon chiral perturbation theory [17]. HereMs is
the staggered magnetization density. Similarly, the uniform susceptibility takes the form

χu =
2ρs

3c2

{
1+

1
3

c
ρsLl

β̃1(l)+
1
3

(
c

ρsLl

)2[
β̃2(l)−

1
3

β̃1(l)
2−6ψ(l)

]
+O

(
1
L3

)}
. (2.5)

Herel = (βc/L)1/3 determines the shape of an approximately cubic space-time box of sizeL×L×
β , with βc≈ L. The functionsβi(l), β̃i(l), andψ(l) are known shape-coefficients [15, 17].

The susceptibilitiesχs andχu have been calculated numerically for the antiferromagnetic spin
1
2 quantum Heisenberg model on the square lattice using a very efficient loop-cluster algorithm
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[20, 34]. In a recent study using a zero-temperature valence-bond projector method, a very accurate
result was obtained for the staggered magnetization per spin M̃s = Msa2 [35]. The best estimate
of the low-energy parameters is given by [36]

M̃s = 0.30743(1), ρs = 0.1808(4)J, c = 1.6585(10)Ja (square lattice). (2.6)

In addition to the cuprates, another superconducting material, NaxCoO2·yH2O, has drawn
a lot of attention both theoretically and experimentally. Unfortunately, due to the fact that the
underlying lattice geometry of the spin12 cobalt sites in these materials is triangular — which leads
to strong geometric frustration — a first principles Monte Carlo study is impossible in practice.
Nevertheless, at fillingx = 1

3 the unhydrated parent compound NaxCoO2 may be described by the
Heisenberg model on a honeycomb lattice which allows one to simulate the system efficiently with
the loop-cluster algorithm. In this case one obtains [37]

M̃s = 0.2688(3), ρs = 0.102(2)J, c = 1.297(16)Ja (honeycomb lattice). (2.7)

The reduction of the staggered magnetization per spiñMs and the spin stiffnessρs compared to
the square lattice case indicates larger quantum fluctuations on the honeycomb lattice. This is
expected since the coordination number of the honeycomb lattice is smaller than the one of the
square lattice. Once the low-energy parameters are determined with high precision, the effective
theory makes unambiguous predictions, which in turn are testable in numerical simulations.

2.2 Rotor Spectrum in the Cylindrical δ -Regime

In the very low temperature limit, one enters the cylindrical δ -regime of space-time vol-
umes withβc≫ L. In this case, the staggered magnetization vector acts as a quantum rotor and,
correspondingly, the low-energy end of the spectrum takes the form ES = S(S+ 1)/2Θ. Here
S∈ {0,1,2, ...} is the total spin andΘ is the moment of inertia of the quantum rotor which is given
by [17]

Θ =
ρsL2

c2

[
1+

3.900265c
4πρsL

+O

(
1
L2

)]
. (2.8)

The probability distribution of the uniform magnetizationM3 = S3 takes the form

p(M3) =
1
Z ∑

S≥|M3|

exp(−βES) , Z =
∞

∑
S=0

(2S+1)exp(−βES) . (2.9)

Having determined the values of the low-energy parameters̃Ms, ρs, andc from the cubic
space-time regime, one can now test the effective theory in the cylindrical regime. Figure 1 shows
a comparison of the effective theory prediction for the probability distribution p(M3) of eq.(2.9)
with Monte Carlo data for the system on the honeycomb lattice. The observed excellent agreement
— which does not involve any adjustable parameters — confirmsthe quantitative correctness of
the effective theory.
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Figure 1: Cylindrical space-time volume for a honeycomb lattice (left). Comparison of the effective theory
prediction for the probability distribution p(M3) with Monte Carlo data in the cylindricalδ -regime on a
honeycomb lattice (right).

2.3 Constraint Effective Potential for the Square Lattice Antiferromagnet

Let us again consider the system in a periodic cubic space-time volumeL× L× β with the
inverse temperature fixed atβ = L/c. The space-time average of the staggered magnetization is
given by

~Φ =
1
2

1
L2β

∫
d2x dt~e(x) =

1
2

1
L3

∫
d3x~e(x). (2.10)

Due to theSU(2)s symmetry, the probability distribution

p(Φ) =
1
Z

∫
D~e exp(−S[~e]) δ

(
~Φ−

1
2

1
L3

∫
d3x~e(x)

)
= N exp(−U(Φ)). (2.11)

of the mean staggered magnetization vector~Φ only depends on the magnitudeΦ = |~Φ|. The
constraint effective potentialU(Φ) represents the free energy density of configurations constrained
to a fixed mean staggered magnetizationΦ. Göckeler and Leutwyler have used chiral perturbation
theory to systematically work out the finite-size effects ofthe constraint effective potential near its
minimum [38, 39]. At leading order,U(Φ) = U0(ψ) is a known universal function of the rescaled
variableψ = ρsL(Φ−M̃s)/M̃sc. Some values of the functionU0(ψ) extracted from the numerical
data of [36] are compared with the analytic result of [38, 39]in figure 2. It should be pointed out
that the observed perfect agreement does not depend on any adjustable parameters, and thus again
confirms the correctness of the effective theory in great detail.

3. Lightly Doped Antiferromagnets

The standard microscopic models for antiferromagnetism and high-temperature superconduc-
tivity are Hubbard andt-J-type models. The symmetries of these models are of central importance
for the construction of the low-energy effective theories for magnons and holes. Thet-J model is
defined by the nearest-neighbor hopping Hamilton operator

H = P

{
− t ∑

x,i

(c†
xcx+î +c†

x+î
cx)+J∑

x,i

~Sx ·~Sx+î

}
P, cx =

(
cx↑

cx↓

)
, ~Sx = c†

x
~σ
2

cx. (3.1)
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Figure 2: Probability distributions p(Φ) of the mean staggered magnetization on the square lattice for dif-
ferent volumes (left). In the infinite-volume limit the finite-volume curves approach the vertical line which
marks the order parameter̃Ms = 0.30743(1). The analytic result for the universal function U0(ψ) is com-
pared to Monte Carlo data without any adjustable parameters(right).
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Figure 3: The energy-momentum dispersion relation for a single hole in the t-J model on a square lattice
over the corresponding Brillouin zone (left). The holes reside in momentum space pockets centered at lattice
momenta

(
± π

2a,± π
2a

)
which are represented by the four crosses (right).

The fermion creation and annihilation operators obey standard anticommutation relations and act
in a restricted Hilbert space of empty or at most singly occupied sites, while states with doubly
occupied sites are eliminated from the Hilbert space by the projection operatorP. Thet-J model
is invariant againstSU(2)s spin rotations,U(1)Q fermion number transformations, the discrete
rotations, reflections, and shift symmetries of the spatiallattice, as well as against time-reversal. At
zero doping, i.e. at half-filling, thet-J model reduces to the Heisenberg model.

As illustrated in figure 3, numerical simulations of the single-hole sector of thet-J model show
that the holes reside in momentum-space pockets centered at

(
± π

2a,± π
2a

)
in the Brillouin zone

[26, 27, 30]. There are four half-pockets which give rise to two different species of holes. In the
effective theory the location of the two species in different regions of the Brillouin zone manifests
itself as a flavor index that responds to discrete rotations,reflections, and shift symmetries.
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3.1 Nonlinear Realization of the SU(2)s Symmetry

In order to couple the holes to the magnons, a nonlinear realization of theSU(2)s symmetry
has been constructed in [28]. The globalSU(2)s symmetry then manifests itself as a localU(1)s

symmetry in the unbroken subgroup. This is analogous to baryon chiral perturbation theory in
which the spontaneously brokenSU(2)L×SU(2)R chiral symmetry of QCD is implemented on the
nucleon fields as a localSU(2)L=R transformation in the unbroken isospin subgroup. The definition
of the nonlinear realization of theSU(2)s symmetry proceeds as follows. First, one diagonalizes
the magnon field by a unitary transformationu(x) ∈ SU(2)s, i.e.

u(x)
1
2
(1+~e(x) ·~σ)u(x)† =

1
2
(1+ σ3) =

(
1 0
0 0

)
, u11(x) ≥ 0. (3.2)

Under anSU(2)s transformationg, the diagonalizing fieldu(x) transforms asu(x)′ = h(x)u(x)g†,
which implicitly defines the nonlinear symmetry transformation h(x) ∈U(1)s. The traceless anti-
Hermitean field

vµ(x) = u(x)∂µ u(x)†, vµ(x) = iva
µ (x)σa, v±µ (x) = v1

µ(x)∓ iv2
µ (x), (3.3)

decomposes into an Abelian “gauge” fieldv3
µ(x) and two “charged” vector fieldsv±µ (x) to which

the doped holes can couple.

3.2 Effective Lagrangian for Magnons and Holes on the Square Lattice

The effective field theory is defined in the space-time continuum and the holes are described
by two independent Grassmann-valued fieldsψ f

s (x) andψ f †
s (x) carrying a “flavor” indexf = α ,β

that characterizes the corresponding hole pocket. The index s = ± denotes spin parallel (+) or
antiparallel (−) to the local staggered magnetization. A detailed symmetryanalysis was carried out
in [30]. The resulting leading terms in the effective Lagrangian with two fermion fields (containing
at most one temporal or two spatial derivatives) describe the propagation of holes as well as their
couplings to magnons and are given by

L2 = ∑
f=α,β
s=+,−

[
Mψ f †

s ψ f
s + ψ f †

s Dtψ f
s +

1
2M′

Diψ f †
s Diψ f

s + σ f
1

2M′′

(
D1ψ f †

s D2ψ f
s +D2ψ f †

s D1ψ f
s

)

+Λ
(
ψ f †

s vs
1ψ f

−s+ σ f ψ f †
s vs

2ψ f
−s

)
+N1ψ f †

s vs
i v

−s
i ψ f

s + σ f N2
(
ψ f †

s vs
1v−s

2 ψ f
s + ψ f †

s vs
2v−s

1 ψ f
s

)]
. (3.4)

HereM is the rest mass andM′ andM′′ are the kinetic masses of a hole,Λ is a hole-one-magnon,
andN1 andN2 are hole-two-magnon couplings, which all take real values.The signσ f is + for
f = α and− for f = β . The covariant derivatives are given byDµψ f

±(x) =
[
∂µ ± iv3

µ(x)
]

ψ f
±(x).

Remarkably, the term in the Lagrangian proportional toΛ contains just a single (uncontracted)
spatial derivative (which is contained invs

i ). Due to the nontrivial rotation properties of flavor, this
term is still 90 degrees rotation invariant. Due to the smallnumber of derivatives it contains, this
term dominates the low-energy dynamics. In particular, it alone is responsible for one-magnon
exchange and for the existence of spiral phases. The QCD analog of Λ is the couplinggA.
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′
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Figure 4: One-magnon exchange between two holes (left), and probability distribution for the bound state
of two holes with flavorsα andβ (right).

3.3 Magnon-mediated Two-Hole Bound States

Figure 4 shows the Feynman diagram for one-magnon exchange between two holes. Depend-
ing on the flavor-combination, the resulting potentials aregiven by

Vαα(~r) = γ
sin(2ϕ)

r2 , Vββ (~r) = −γ
sin(2ϕ)

r2 , Vαβ (~r) = Vβα(~r) = γ
cos(2ϕ)

r2 . (3.5)

whereγ = Λ2/2πρs. Here~r is the distance vector between the two holes andϕ is the angle between
~r and a lattice axis. The corresponding two-hole Schrödingerequation has been solved analytically
in [30]. Figure 4 also illustrates the resulting probability distribution for the bound state of two
holes with flavorsα andβ . Although it seems to resembledx2−y2 symmetry, it actually has p-wave
symmetry. Since the Cooper pairs of high-temperature superconductors have d-wave symmetry,
one may conclude that magnon-mediated two-hole bound states in a lightly doped antiferromagnet
do not resemble Cooper pairs. They are, however, a condensedmatter analog of the deuteron.

3.4 Spiral Phases of the Staggered Magnetization

The systematic effective field theory for antiferromagnetic magnons and holes has also been
used to investigate the propagation of holes in the background of a spatially varying staggered
magnetization field [31]. For large values ofρs, distortions in the staggered magnetization cost a
large amount of energy and a homogeneous phase is energetically favored. In that case, all four
hole pockets are equally populated with doped holes. For smaller values ofρs, on the other hand,
the doped holes can gain energy from a spiral in the staggeredmagnetization. For intermediate
values ofρs a zero degree spiral is realized, in which only two hole pockets are populated. The
homogeneous as well as the spiral phase are illustrated in figure 5. It should be noted that spiral
phases arise due to the leading magnon-hole couplingΛ. In electron-doped antiferromagnets the
charge carriers reside in other places in the Brillouin zone. As a consequence, an analog of the
Λ-term is absent in the electron-doped case, and spiral phases do not arise [32]. Spiral phases
have indeed been observed in certain hole- but not in electron-doped antiferromagnets. They are a
condensed matter analog of pion condensates in nuclear matter.
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Figure 5: The homogeneous phase with constant staggered magnetization (left) as well as a zero degree
spiral oriented along a lattice axis (right).
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(
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3a
,

2π
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√

3a

)

(0,
4π

3
√

3a
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α

α

α

β

β

β

k2

k1

Figure 6: The energy-momentum dispersion relation for a single hole in the t-J model on a honeycomb
lattice over the corresponding Brillouin zone (left). The holes reside in momentum space pockets centered
at lattice momenta at the zone corners (right).

3.5 Effective Lagrangian for Holes on the Honeycomb Lattice

The single hole sector of thet-J model on the honeycomb lattice has been investigated in [37].
The resulting dispersion relation is illustrated in figure 6. Again, in the effective continuum theory
the location of holes in lattice momentum space manifests itself as a flavor index. The leading
terms of the effective Lagrangian with two fermion fields (containing at most one temporal or two
spatial derivatives) are given by

L2 = ∑
f=α,β
s=+,−

[
Mψ f †

s ψ f
s + ψ f †

s Dtψ f
s +

1
2M′

Diψ f †
s Diψ f

s + Λψ f †
s (isvs

1 + σ f v
s
2)ψ

f
−s

+ iK
[
(D1 + isσ f D2)ψ f †

s (vs
1 + isσ f v

s
2)ψ

f
−s− (vs

1 + isσ f v
s
2)ψ f †

s (D1+ isσ f D2)ψ f
−s

]

+ σ f Lψ f †
s εi j f 3

i j ψ f
s +N1ψ f †

s vs
i v

−s
i ψ f

s + isσ f N2
(
ψ f †

s vs
1v−s

2 ψ f
s −ψ f †

s vs
2v−s

1 ψ f
s

)]
. (3.6)
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HereM is the rest mass andM′ is the kinetic mass of a hole,Λ is the leading andK is a sub-leading
hole-one-magnon coupling, whileL, N1, and N2 are hole-two-magnon couplings, andf 3

i j (x) =

∂iv3
j (x)− ∂ jv3

i (x) is the field strength of the composite Abelian “gauge” field. Due to the single-
derivative couplingΛ, spiral phases arise in this case as well [33].

4. Conclusions

Both for the strong interactions and for lightly doped antiferromagnets systematic low-energy
effective field theories provide valuable analytic insightinto the highly non-trivial dynamics, as
well as accurate predictions depending on a number of a priori undetermined low-energy param-
eters. Using very efficient cluster algorithms, for quantumantiferromagnets some of these pa-
rameters have been determined with permille accuracy. The results presented here should also be
encouraging for lattice QCD simulations, were the numerical problem is much harder. Eventually,
one may expect agreement between lattice QCD and chiral perturbation theory at the same level of
accuracy as achieved in the condensed matter problems discussed here.
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