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1. Introduction

Almost two decades ago Weinberg proposed a way to extend baryon chiral perturbation theory
to few-nucleon systems [1] in which chiral perturbation theory is applied to the effective potential,
defined as the sum of all possibleN-nucleon irreducible diagrams, rather than to the scattering
amplitude. The amplitude is then generated by solving the corresponding dynamical equation
such as the Lippmann-Schwinger (LS) equation in the two-nucleon sector. For recent reviews and
references the reader is referred to Refs. [3, 4, 5].

While phenomenologically successful, the consistency of Weinberg’s approach was ques-
tioned by several authors. The resulting nucleon-nucleon (NN) potential is non-renormalizable
in the traditional sense, i.e. iterations of the LS equationgenerate divergent terms with structures
which are not included in the original potential. Consequently, renormalization of the Neumann
series resulting from iterating the LS equation requires inclusion of contributions of infinitely many
higher-order short-range operators in the potential (counterterms). The freedom in the choice of the
finite parts of counterterms is compensated by the running ofthe corresponding renormalized cou-
pling constants. Notice that the above mentioned complications can be avoided if pion-exchange
contributions to the potential are treated perturbatively[6, 7]. The resulting perturbative expan-
sion for the scattering amplitude was found not to converge for nucleon momenta of the order of
the pion mass at least in certain spin-triplet channels [8],see however Ref. [9], yielding strong
evidence that pion-exchange contributions have to be treated non-perturbatively [10, 11]. This
is in line with phenomenological successes of Weinberg’s approach which treats pion exchange
contributions nonperturbatively. In particular, the mostadvanced analyses of the NN system at
next-to-next-to-next-to-leading order in the Weinberg’spower counting scheme demonstrate the
ability to accurately describe NN scattering data up to center-of-mass momenta at least of the order
∼ 2Mπ [12, 13]. It is important to emphasize that these studies arecarried out within the cutoff
EFT along the lines of Lepage [14, 15] who argued that the cutoff parameterΛ in such calculations
should be taken of the order of the relevant hard large scale such as e.g. the mass of theρ meson,
see also Refs. [16, 17, 13, 18, 19]. The fairly narrow range ofcutoffs Λ = 450. . .600 MeV used
in Refs. [12, 13] was criticized in [20] where low NN partial waves were considered based on the
one-pion exchange potential and contact interactions employing a much larger range of cutoffs with
Λ < 4 GeV. Furthermore, several groups are exploring the possibility of manifestly nonperturbative
renormalization of the LS equation by taking the limitΛ → ∞, see e. g. [21, 22, 23, 24, 25, 26].
In addition, some authors advocate various kinds of mixed procedure by treating certain contribu-
tions to the potential and/or high partial waves in perturbation theory, see [20, 25]. Finally, using
renormalization-group methods to set up power counting rules for NN interaction is explored in
[27].

The purpose of this manuscript is to clarify some conceptualissues related to renormaliza-
tion and the role of the cutoff in the context of EFT for the two-nucleon system. We first discuss
the meaning of low-energy theorems (LETs) for subthresholdparameters using general arguments
based on the analytic structure of the scattering amplitude. We argue that LETs provide an impor-
tant and nontrivial test of long-range physics and thus mustbe respected in EFT with explicit pions,
see also [11]. We then consider effective field theory (EFT) for an exactly solvable model for two
nucleons interacting via the long- (r l ∼ m−1

l ) and short-range (rs ∼ m−1
s ≪ m−1

l ) forces which can
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be regarded as a toy model for chiral EFT [28]. We employ the Weinberg-like (or, more precisely,
Lepage-like [14]) formulation with a finite cutoffΛ and demonstrate the validity of the LETs as
long as it is chosen of the orderΛ ∼ ms. Taking the limitΛ → ∞ is shown to yield a finite result for
the amplitude but leads to breakdown of LETs. This procedureis, therefore, not compatible with
the EFT framework. We argue thatΛ should not be taken (considerably) larger than the short-range
scalems in the problem.

2. Low-energy theorems and the modified effective range expansion

Consider two non-relativistic nucleons interacting via the local potentialV. The ordinary
effective range function

Fl (k
2) ≡ k2l+1 cotδl (k) (2.1)

with k, l andδl (k) denoting the CMS scattering momentum, orbital angular momentum and phase
shift, respectively, is well known to be a real meromorphic function ofk2 near the origin for local
non-singular potentials of a finite range [29, 30]. It can, therefore, be Taylor-expanded leading to
the well-known effective range expansion (ERE)

Fl (k
2) = −

1
a

+
1
2

rk2 +v2k4 +v3k6 + . . . , (2.2)

with a, r andvi being the scattering length, effective range and the so-called shape parameters.
Generally, the radius of convergence of the ERE is bounded from above by the lowest left-hand
singularity associated with the potential. For example, for Yukawa-type potentials corresponding
to exchange of a meson of massM, the maximal radius of convergence of the ERE is given byk2 <

M2/4. For nucleon-nucleon interaction, the ERE is, therefore,expected to converge for energies
up to Elab ∼ M2

π/(2m) = 10.5 MeV, wherem denotes the nucleon mass. Notice that pionless
EFT in the two-nucleon sector in the absence of external sources is equivalent to ERE since both
approaches provide an expansion of the amplitude in powers of k/Mπ , have the same validity range
and incorporate the same physical principles.

The framework of ERE can be generalized to the case in which the potential is given by a sum
of a long-range (r l ∼ m−1

l ) and short-range (rs ∼ m−1
s ≪ m−1

l ) potentialsVL andVS, respectively.
Following van Haeringen and Kok [31], one can define the modified effective range functionFM

l

via

FM
l (k2) ≡ ML

l (k)+
k2l+1

| f L
l (k)|

cot[δl (k)−δ L
l (k)] , (2.3)

whereδ L
l (k) and f L

l (k) refer to the phase shift and Jost function associated with the potentialVL

and the quantityML
l (k) can be computed from the Jost solutionf L

l (k, r) associated withVL, see
[31] for more details and precise definitions. The functionFM

l (k2) reduces, per construction, to
Fl (k2) for VL = 0 and is a real meromorphic function in a much larger region given by 1/rs as
compared toFl(k2) since the lowest left-hand singularity due toVL is removed fromFM

l (k2).1

It is, therefore, natural to assume that the coefficients in the modified effective range expansion
(MERE), i.e. the Taylor expansion ofFM

l (k2) near the origin, are driven by the hard scalems

1The existence ofML
l (k) implies certain constraints on the small-r behavior ofVL(r).
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(except for the modified scattering length), see [32] for a related discussion. The meaning of the
LETs becomes evident if one uses Eq. (2.3) to express the ordinary effective range functionFl(k2)

in terms of the modified one,FM
l (k2), and the quantities which are calculable solely from the

long-range interactionVL. The MERE forFM
l (k2) then yields an expansion of the subthreshold

parameters entering Eq. (2.2) in powers ofmL/mS. In particular, using the first few terms in the
MERE as input allows to make predictions forall coefficients in the ERE. We further emphasize
that the appearance of the correlations between the subthreshold parameters in the above-mentioned
sense is the only signature of the long-range interaction atlow energy.

3. Toy model

We now consider two nucleons in the spin-singlet S-wave interacting via the two-range sepa-
rable potential

V(p, p′) = vl Fl(p)Fl (p′)+vsFs(p)Fs(p′) , Fl(p) ≡

√

p2 +m2
s

p2 +m2
l

, Fs(p) ≡
1

√

p2 +m2
s

, (3.1)

where the massesml andms fulfill the conditionml ≪ ms. Further, the dimensionless quantitiesvl

andvs denote the strengths of the long- and short-range interactions, respectively. The choice of the
explicit form ofFl ,s(p) is entirely motivated by the simplicity of calculations [28]. The coefficients
in the ERE generally scale with the mass corresponding to thelong-range interaction which gives
rise to the first left-hand cut in the T-matrix. Notice that the scattering length can be tuned to any
value by adjusting the strength of the interaction. The coefficients in the ERE can be expanded in
powers ofml/ms leading to the “chiral” expansion:

a =
1
ml

(

α(0)
a + α(1)

a
ml

ms
+ α(2)

a
m2

l

m2
s
+ . . .

)

,

r =
1
ml

(

α(0)
r + α(1)

r
ml

ms
+ α(2)

r
m2

l

m2
s
+ . . .

)

,

vi =
1

m2i−1
l

(

α(0)
vi + α(1)

vi

ml

ms
+ α(2)

vi

m2
l

m2
s
+ . . .

)

, (3.2)

whereα(m)
a , α(m)

r andα(m)
vi are dimensionless constants whose values are determined bythe specific

form of the interaction potential. We fine tune the strengthsof the long- and short-range interactions
in such a way that they generate scattering lengths of a natural size. More precisely, we require that
the scattering length takes the valuea = αl/ml (a = αs/ms) with a dimensionless constant|αl | ∼ 1
(|αs| ∼ 1) when the short-range (long-range) interaction is switched off. This leads to

vl = −
8πm3

l αl

m
(

αl m2
s +m2

l αl −2m2
s

) , vs = −
4πmsαs

m(αs−1)
. (3.3)

One then finds the following expressions for the first three terms in the “chiral” expansion of the
scattering length

α(0)
a = αl , α(1)

a = (αl −1)2αs , α(2)
a = (αl −1)2αl α2

s , (3.4)
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T
(1)

T
(−1)

T
(0)

Figure 1: Leading, next-to-leading and next-to-next-to-leading order contributions to the scattering ampli-
tude in the KSW-like approach. The solid lines denote nucleons while the dashed ones represent an insertion
of the lowest-order (i.e.O(q−1)) long-range interaction. Solid dots (dotted lines) denotean insertion of the
lowest-order contact interaction∝ C0 (subleading order-O(q) contribution to the long-range interaction).

and effective range

α(0)
r =

3αl −4
αl

, α(1)
r =

2(αl −1)(3αl −4)αs

α2
l

,

α(2)
r =

(αl −1)(3αl −4)(5αl −3)α2
s +(2−αl )α2

l

α3
l

. (3.5)

Notice that in the model considered the leading terms in theml/ms-expansion of the ERE coef-
ficients are completely fixed by the long-range interaction.The scenario realized corresponds to
a strong (at momentak∼ ml ) long-range interaction which needs to be treated non-perturbatively
and a weak short-range interaction which can be taken into account perturbatively. This particular
hierarchy is not important for our purposes.

At momenta of the orderk . ml , the details of the short-range interaction cannot be resolved.
An EFT description emerges by keeping the long-range interaction and replacing the short-range
one by a series of contact termsVshort(p, p′) = C0 +C2(p2 + p′2)+ . . .. Renormalization prescrip-
tion plays an important role in organizing the EFT expansion. We first consider the most convenient
and elegant KSW-like formulation based on the subtractive renormalization which respects dimen-
sional power counting at the level of diagrams. The soft and hard scales in the problem are given
by q = {k, µ , ml} andλ = {ms, m}, respectively. Hereµ ∼ ml denotes the subtraction point. The
contributions to the amplitude up to next-to-next-to-leading order (NNLO) in theq/λ -expansion
are visualized in Fig. 1 and can be easily verified using naivedimensional analysis. Notice that
the natural size of the short-range effects in our model suggests the scaling of the short-range in-
teractions in agreement with the naive dimensional analysis, i.e.C2n ∼ q0. At NNLO, the linearly
divergent integral occurs which is treated in the followingway

I reg
1 ≡ 4πm

∫ Λ

0

l2dl
(2π)3

1
k2− l2+ iε

= −
mΛ
2π2 − i

mk
4π

+O(Λ−1) → Isubtr
1 = −

mµ
2π2 − i

mk
4π

. (3.6)

The effective range function at NNLO is given by the perturbative expansion

kcotδ = −
4π
m

1

T(−1)

[

1−
T(0)

T(−1)
+

(

T(0)

T(−1)

)2

−
T(1)

T(−1)

]

+ ik , (3.7)
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where explicit expressions for the amplitudesT(−1), T(0) and T(1) are given in [28]. Theµ-
dependence of the renormalized low-energy constant (LEC)C0(µ) is determined by the renor-
malization group equation

d
dµ

[

T(−1) +T(0) +T(1)
]

= 0. (3.8)

One needs two observables to fix the integration constants inthe above equation forC0(µ), see
Ref. [28] for more details which we choose to beα(1)

a andα(2)
a .2 This leads to

C0(µ) =
4παs

mms
+

8µα2
s

mm2
s

+O(q2) , (3.9)

and the following prediction for the effective range

r =
1
ml

[

3αl −4
αl

+
2(αl −1)(3αl −4)αs

α2
l ms

ml +
(αl −1)(3αl −4)(5αl −3)α2

s +(2−αl )α2
l

α3
l m2

s
m2

l

−
4µml (αl −1)(3αl −4)α3

s (πml (3−5αl )+4µαl )

π2α3
l m3

s
+O

(

q4)
]

. (3.10)

As expected, the first three terms in the “chiral” expansion of r and shape parametersvi , see
Ref. [28], are correctly reproduced at NNLO being protectedby the LETs introduced in the previ-
ous section. The knowledge ofα(i)

xj for one particularx j is sufficient to predictα(i)
xk for all k 6= j.

An EFT formulation like the one described above which respects the manifest power counting
at every stage of the calculation is not available in the realistic case of nucleon-nucleon interaction.
Here, one lacks a regularization prescription forall divergent integrals resulting from iterations
of the potential in the LS equation which would keep regularization artefacts small without, at
the same time, introducing a new hard scale in the problem. Inthe context of pionful EFT for
few-nucleon systems, the divergent integrals are usually dealt with by introducing an UV cutoff
Λ, which has to be taken of the orderΛ ∼ ms or higher in order to keep regularization artefacts
small. Clearly, cutoff-regularized diagrams do not obey dimensional power counting anymore.
Renormalizationis carried out in this Weinberg-like framework by adjustingthe bare LECsCi to
low-energy observables at a given value ofΛ which then allows to eliminate the bare LECs in all
other quantities of physical interest.3

To be specific, consider the effective potential at next-to-leading order in the Weinberg-like
approach as depicted in Fig. 2

Veff(p, p′) = vl Fl (p)Fl (p′)+C0 . (3.11)

In addition to the divergent integralI reg
1 in Eq. (3.6), iteration of the above potential in the LS

equation leads to another divergent integral

I reg
2 ≡ 4πm

∫ Λ

0

l2dl
(2π)3

√

l2 +m2
s

[k2− l2+ iε ][l2+m2
l ]

=
m

2π2

[

k

√

k2 +m2
s

k2 +m2
l

ln

(

k+
√

k2 +m2
s

ms

)

−
ml mss

2(k2 +m2
l )

+ ln
( ms

2Λ

)

−
iπk

√

k2 +m2
s

2
(

k2 +m2
l

)

)

+O(Λ−1) , (3.12)

2In the considered model, the leading terms in the “chiral” expansion of the subthreshold parameters are driven by
the long-range interaction alone and are, of course, correctly reproduced at orderO(q(−1)) which is parameter free.

3Notice that the resulting nonlinear equations for{Ci} do not necessarily possess real solutions for all values ofΛ.
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T

V

Figure 2: Effective potential and scattering amplitude in the Weinberg-like approach. The dashed-dotted
line refers to the full long-range interaction. Solid dot and filled rectangle refer to the leading and subleading
contact interactions, respectively. For remaining notation see Fig. 1.

wheres≡
(

2
√

m2
s −m2

l /ms

)

arccot
(

ml/
√

m2
s −m2

l

)

. Neglecting, for the sake of simplicity, the

finite cutoff artefacts represented by theO(Λ−1)-terms in Eqs. (3.6) and (3.12) and performing
straightforward calculations, one obtains for the scattering length:

aΛ =
πms

{

C0m
[

2αl
(

ms(Λ−sml)+2m2
l ln(ms/2Λ)

)

+ πmlms
]

+4π2αl ms
}

ml

{

2πm2
s (C0mΛ+2π2)−C0mmlαl [sms−2ml ln(ms/2Λ)]2

} . (3.13)

Renormalization is carried out by matching the above expression to the value of the scattering
length in the model (to be regarded as a data),

aunderlying=
ml (2αl −1)αs−αl ms

ml (mlαl αs−ms)
, (3.14)

and expressingC0(Λ) in terms ofaunderlying. A straightforward calculation yields the following
renormalizedexpression for the effective range:

rΛ =
1
ml

[

3αl −4
αl

+
2(αl −1)(3αl −4)αs

α2
l ms

ml +

(

4(αl −2)αs

παl m2
s

(

ln
ms

2Λ
+1

)

+
(αl −1)(3αl −4)(5αl −3)α2

s +(2−αl )α2
l

α3
l m2

s

)

m2
l +O

(

m3
l

)

]

. (3.15)

In agreement with the LETs discussed above, one observes that the subleading terms in the “chiral”
expansion ofr (andvi , see [28]) are correctly reproduced onceC0 is appropriately tuned. The sub-
subleading and higher-order terms in the “chiral” expansion of r andvi are not reproduced correctly
being not protected by the LETs at the considered order. Moreover, since the included LEC is
insufficient to absorb all divergencies arising from iterations of the LS equation, nothing prevents
the appearance of positive powers or logarithms of the cutoff Λ in the expressions forα(≥2)

r . The
results in Eq. (3.15) show that this is indeed the case. The dependence onΛ occurs, however, only
in contributions beyond the accuracy of calculation and, obviously, does not affect the predictive
power of the EFT as long as the cutoff is chosen to be of the order of the characteristic hard scale in
the problem,Λ∼ms. Taking valuesΛ≫ms artificially enhances certain higher-order contributions
in the “chiral” expansion of the ERE coefficients spoiling the predictive power of the theory.

The appearance of positive powers ofΛ and/or logarithmic terms in the predicted “chiral”
expansion of the subthreshold parameters, see Eq. (3.15), may give the wrong impression that no

7
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finite limit exists forrΛ and(vi)Λ asΛ → ∞. In fact, taking the limitΛ → ∞ does not commute with
the Taylor expansion of the ERE coefficients in powers ofml . It is easy to see, that all coefficients
in the ERE as well as the on-shell T-matrix stay finite asΛ → ∞. In particular, one obtains the
following infinite-cutoff prediction for the effective range:

r∞ =
1
ml

[

3αl −4
αl

+
4(αl −1)2αs

α2
l ms

ml +
α3

l

(

8α2
s −1

)

+ α2
l

(

2−20α2
s

)

+16αl α2
s −4α2

s

α3
l m2

s
m2

l + . . .

]

,

(3.16)
where ellipses refer toO

(

m3
l

)

-terms. One observes that the results after removing the cutoff fail

to reproduce the low-energy theorem by yielding wrong values for α(1)
r , which also holds true for

α(1)
vi [28] (notice that, per construction, the scattering lengthis still correctly reproduced).

4. Discussion and conclusions

The breakdown of LETs in the Weinberg-like approach in theΛ → ∞ limit can be traced back
to spuriousΛ-dependent contributions still appearing in expressions for observables after renor-
malization is carried out, see e.g. Eq. (3.15), which are irrelevant (at the order of calculations) in
the regimeΛ ∼ ms but become numerically dominant ifΛ ≫ ms. Due to non-renormalizability of
the effective potential as discussed in the introduction, such spurious terms do, in general, involve
logarithms and positive powers ofΛ which, asΛ gets increased beyond the hard scalems, become,
at some point, comparable in size with lower-order terms in the “chiral” expansion. For example,
the appearance of terms linear inΛ would suggest the breakdown of LETs as the cutoff approaches
the scaleΛ ∼ m2

s/ml . The unavoidable appearance of ever higher power-law divergences when
going to higher orders in the EFT expansion implies that the cutoff should not be increased be-
yond the pertinent hard scale in Weinberg-like or Lepage-like approach to NN scattering leading
to Λ ∼ ms as the optimal choice.4 It is furthermore instructive to compare the predictions for the
effective range in Eqs. (3.10) and (3.15) corresponding to two different renormalization schemes.
One observes that takingΛ ≫ ms in Eq. (3.15) has an effect which is qualitatively similar tochoos-
ing µ ≫ ml in Eq. (3.10) and corresponds to an improper choice of renormalization conditions in
the EFT framework.
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