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1. Introduction

Testing the validity of Chiral Perturbation Theory (ChPT) is a challenging task because of the
many unknown parameters, called the Low Energy Constants (LECs), entering into the theory. In
particular, at NNLO 90 unknown constants, theCi , appear in thep6 Lagrangian.

One way to overcome this problem is to study different combinations of observables that
depend on theCi in the same way. These lead toCi-independent relations which can be used to
perform the test. Furthermore those combinations might be useful to gain information on the LECs
too, since they let us isolate the same combinations ofCi using different observables.

In [2] we study 76 observables at NNLO and find 36 such relations. We compare ChPT NNLO
predictions with data/dispersive results for 13 of these. The observables involved are the ones inππ
andπK-scattering and inKℓ4 decay. Here we first discuss how we perform the numerical analysis,
the results of which appear in Tab.1, 2, 3 and 4, then we present for each process the relations
studied. Finally we show some preliminary results for a new global fit of theLi at NNLO.

2. Numerical Analysis

The numerical analysis of theCi-independent relations has been done in the following way.
First we evaluate the combinations of observables appearing in each side of the relations using
experiment/dispersive (exp) results of [3] forππ scattering, [4] forπK scattering and [5, 6] for
Kℓ4 decay. Then we use ChPT results up to orderp6 [7, 8, 9] setting theLi to the values of fit 10
in [1]. Finally we subtract from the first (exp) evaluation the ChPT one. These differences will
contain theCi part and higher order corrections. They have been quoted in Tab.1, 2, 3 and 4 in
the columns labeled remainder. This has been done for each side of the relations under study. To
check whether a relation is well satisfied we compare the remainders of its left-hand-side (LHS)
and right-hand-side (RHS). Since they contain the sameCi combinations, they should be equal
within the uncertainties.

The errors quoted in the second columns of Tab.1, 2, 3 and 4 are obtained adding in quadrature
the uncertainties in [3, 4, 5, 6]. This might result in an underestimate of the total error because
of correlations. The theoretical errors due to the NLO LECs are shown inbrackets in the columns
of Tab.1, 2, 3 and 4 labeled NNLO 1-loop. They are obtained by varying all the Li around the
central values of fit 10 according to the full covariance matrix as obtainedby the authors of [1]
and exploring the region withχ2/dof≈ 1 . The error is then estimated as the maximum deviation
observed. The error for theLi contribution at NLO is never shown since it drops out of all the
relations. No uncertainties due to higher order contributions have been added. The uncertainties
due to theoretical errors are mostly on the last quoted digit.

3. ππ scattering

Theππ scattering amplitude can be written as a functionA(s, t,u) which is symmetric int, u:

A(πaπb → πcπd) = δ a,bδ c,dA(s, t,u)+δ c,dδ b,dA(t,u,s)+δ a,dδ b,cA(u, t,s) , (3.1)
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wheres, t,u are the usual Mandelstam variables. The isospin amplitudesT I (s, t) (I = 0,1,2) are
T0(s, t) = 3A(s, t,u) + A(t,u,s) + A(u,s, t) , T1(s, t) = A(s, t,u)−A(u,s, t) , T2(s, t) = A(t,u,s) +

A(u,s, t) , and are expanded in partial waves

T I (s, t) = 32π
+∞

∑
ℓ=0

(2ℓ+1)Pℓ(cosθ)t I
ℓ(s), (3.2)

wheret andu have been written ast =−1
2(s−4m2

π)(1−cosθ), u=−1
2(s−4m2

π)(1+cosθ). Near
threshold thet I

ℓ are further expanded in terms of the threshold parameters

t I
ℓ(s) = q2ℓ(aI

ℓ +bI
ℓq

2 +O(q4)), q2 =
1
4
(s−4m2

π), (3.3)

whereaI
ℓ,b

I
ℓ . . . are the scattering lengths, slopes,. . .. We studied the 11 parameters where a depen-

dence on theCi shows up. Usings+ t +u = 4m2
π we can write the amplitude to orderp6 as

A(s, t,u) = b1 +b2s+b3s2 +b4(t −u)2 +b5s3 +b6s(t −u)2 +non polynomial part (3.4)

The tree level Feynman diagrams give polynomial contributions toA(s, t,u) which must be ex-
pressible in terms ofb1, . . . ,b6. Therefore we expect and find 5 relations:

[

5b2
0−2b0

0−27a1
1−15a2

0 +6a0
0

]

Ci
= −18

[

b1
1

]

Ci
, (3.5)

[

3a1
1 +b2

0

]

Ci
= 20

[

b2
2−b0

2−a2
2 +a0

2

]

Ci
, (3.6)

[

b0
0 +5b2

0 +9a1
1

]

Ci
= 90

[

a0
2−b0

2

]

Ci
, (3.7)

[

3b1
1 +25a2

2

]

Ci
= 10

[

a0
2

]

Ci
, (3.8)

[

−5b2
2 +2b0

2

]

Ci
= 21

[

a1
3

]

Ci
, (3.9)

where[A]Ci
≡ Cr

i -dependent part ofA. All quantities are expressed in units ofm2
π+ . In fact, since

these relations hold for every contribution to the polynomial part, they are valid for the NLO tree
level contribution as well and for two- and three-flavour ChPT. Thus they getLi-contributions only
at NNLO via the non polynomial part of Eq. (3.4).

In Tab. 1 we show our numerical results. We quote the left-hand-side (LHS) and right-hand-
side (RHS) of each of the relations. In the second column we use the valuesof the threshold
parameters of [3]. The next columns use the ChPT results of [7] and give the contributions from
pure one-loop at NLO, the tree level NLO contribution, the pure two-loop contribution, and theLi

dependent part at NNLO (called NNLO 1-loop).

Comparing the remainders of the LHS with the RHS ones, we see that the first three relations
are very well satisfied, while the last two work at a level around two sigma.

We can also check how the two-flavour predictions hold up. Since here thecorrections are in
powers ofm2

π rather than in powers ofm2
K , the expansion should converge better. For the ChPT

evaluation we use the threshold parameters as quoted in [3] for their best fit of the NLO LECs.
The result is shown in Tab. 2. We see the same pattern as for the three-flavour case: the first three
relations are very well satisfied while the last two are somewhat worse but below two sigma.
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[3] NLO NLO NNLO NNLO remainder
1-loop LECs 2-loop 1-loop

LHS (3.5) 0.009±0.039 0.054 −0.044 −0.041 −0.002(3) 0.041±0.039
RHS (3.5) −0.102±0.002 −0.009 −0.044 −0.060 −0.008(6) 0.018±0.002

10 LHS (3.6) 0.334±0.019 0.209 0.097 0.103 0.029(11) −0.105±0.019
10 RHS (3.6) 0.322±0.008 0.177 0.097 0.120 0.034(13) −0.107±0.008

LHS (3.7) 0.216±0.010 0.166 0.029 0.053 0.016(6) −0.047±0.010
RHS (3.7) 0.189±0.003 0.145 0.029 0.049 0.020(7) −0.054±0.003

10 LHS (3.8) 0.213±0.005 0.137 0.032 0.053 0.035(12) −0.043±0.005
10 RHS (3.8) 0.175±0.003 0.121 0.032 0.050 0.029(10) −0.057±0.003
103 LHS (3.9) 0.92±0.07 0.36 0.00 0.56 −0.01(13) 0.00±0.07
103 RHS (3.9) 1.18±0.04 0.42 0.00 0.57 0.03(13) 0.15±0.04

Table 1: The relations found in theππ-scattering. The lowest order contribution is always zero by con-
struction. The NLO LEC part satisfies the relation, as it should. Notice the extra factors of ten for some of
them. All quantities are in the units of powers ofmπ+ .

[3] two-flavour remainder
[3]

LHS (3.5) 0.009±0.039 −0.003 0.007±0.039
RHS (3.5) −0.102±0.002 −0.097 −0.005±0.002

10 LHS (3.6) 0.334±0.019 0.332 0.002±0.019
10 RHS (3.6) 0.322±0.008 0.318 0.004±0.075

LHS (3.7) 0.216±0.010 0.206 0.010±0.010
RHS (3.7) 0.189±0.003 0.189 0.000±0.003

10 LHS (3.8) 0.213±0.005 0.204 0.009±0.005
10 RHS (3.8) 0.175±0.003 0.176 −0.001±0.003
103 LHS (3.9) 0.92±0.07 1.00 −0.08±0.07
103 RHS (3.9) 1.18±0.04 1.15 0.04±0.04

Table 2: The relations found in theππ-scattering evaluated in two-flavour ChPT. In the second column we
have used the NNLO results quoted in [3]. Notice the extra factors of ten for some of them. All quantities
are in units of powers ofmπ+ .

4. πK scattering

TheπK scattering has amplitudesT I (s, t,u) in the isospin channelsI = 1/2,3/2. As for ππ
scattering we introduce the partial wave expansion of the isospin amplitudes

T I (s, t,u) = 16π
+∞

∑
ℓ=0

(2ℓ+1)Pℓ(cosθ)t I
ℓ(s), (4.1)

and we define scattering lengthsaI
ℓ, bI

ℓ by expanding thet I
ℓ(s) near threshold:

t I
ℓ(s) =

1
2

√
sq2ℓ

πK

(

aI
ℓ +bI

ℓq
2
πK +O(q4

πK)
)

, q2
πK =

s
4

(

1−
(mK +mπ)2

s

)(

1−
(mK −mπ)2

s

)

,
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andt = −2q2
πK(1− cosθ), u = −s− t + 2m2

K + 2m2
π . Again we studied only those observables

where a dependence on theCi shows up.

It is also customary to introduce the crossing symmetric and antisymmetric amplitudesT±(s, t,u)

3T+(s, t,u) = T1/2(s, t,u)+T3/2(s, t,u), T−(s, t,u) = T1/2(s, t,u)−T3/2(s, t,u), (4.2)

which can be expanded aroundt = 0, s= u usingν = (s−u)/(4mK) (subthreshold expansion):

T+(s, t,u) =
∞

∑
i, j=0

c+
i j t

iν2 j , T−(s, t,u) =
∞

∑
i, j=0

c−i j t
iν2 j+1. (4.3)

There are 10 subthreshold parameters that have tree level contributionsfrom the NNLO LECs. In
c−01 andc−20 the same combination−C1 +2C3 +2C4 appears [8]:

16ρ2[

c−20

]

Ci
= 3

[

c−01

]

Ci
. (4.4)

Therefore in the isospin odd channel only three subthreshold parameters get independent con-
tributions from theCi . So for the 7 differencesa−ℓ = a1/2

ℓ − a3/2
ℓ and b−ℓ = b1/2

ℓ − b3/2
ℓ getting

contributions at NNLO and three subthreshold parameters we expect four relations:

(

ρ4 +3ρ3 +3ρ +1
)[

a−1
]

Ci
= 2ρ2(ρ +1)2[

b−1
]

Ci
−

2
3

ρ
(

ρ2 +1
)[

b−0
]

Ci

+
1

2ρ

(

ρ2 +
4
3

ρ +1

)

(

ρ2 +1
)[

a−0
]

Ci
, (4.5)

5(ρ +1)2[

b−2
]

Ci
=

(ρ −1)2

ρ2

[

a−1
]

Ci
−

ρ4 + 2
3ρ2 +1

4ρ4

[

a−0
]

Ci
+

ρ2− 2
3ρ +1

2ρ2

[

b−0
]

Ci
, (4.6)

5
(

ρ2 +1
)[

a−2
]

Ci
=

[

a−1
]

Ci
+2ρ

[

b−1
]

Ci
, (4.7)

7
(

ρ2 +1
)[

a−3
]

Ci
=

[

a−2
]

Ci
+2ρ

[

b−2
]

Ci
, (4.8)

the threshold parameters are expressed in units ofmπ+ and we use the symbolρ = mK/mπ .

T+ brings in 7 more combinations of threshold parameters,a+
ℓ = a1/2

ℓ +2a3/2
ℓ andb+

ℓ = b1/2
ℓ +

2b3/2
ℓ , but there are 6 independent subthreshold parameters so we find only one more relation:

7
[

a+
3

]

Ci
=

1
2ρ

[

a+
2

]

Ci
−

[

b+
2

]

Ci
+

1
5ρ

[

b+
1

]

Ci
−

1
60ρ3

[

a+
0

]

Ci
−

1
30ρ2

[

b+
0

]

Ci
. (4.9)

Again these relations hold for all tree-level contributions up to NNLO. The numerical check
is shown in Tab. 3. The columns in Tab. 3 have the same meaning as in Tab. 1.

The first relation is reasonably satisfied, somewhat below two sigma. The second relation has
a large discrepancy but if we assume a theory error of about half the NNLO contribution it seems
reasonable. The third relation is well satisfied but the RHS has a rather large experimental error.
The fourth relation does not work well, mainly due to the fact that we seem to underestimate the
value fora−3 . The last relation works well.

5
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[4] NLO NLO NNLO NNLO remainder
1-loop LECs 2-loop 1-loop

LHS (4.5) 5.4±0.3 0.16 0.97 0.77 −0.11(11) 0.6±0.3
RHS (4.5) 6.9±0.6 0.42 0.97 0.77 −0.03(7) 1.8±0.6

10 LHS (4.7) 0.32±0.01 0.03 0.12 0.11 0.00(2) 0.07±0.01
10 RHS (4.7) 0.37±0.01 0.02 0.12 0.10 −0.01(2) 0.14±0.01
100 LHS (4.6) −0.49±0.02 0.08 −0.25 −0.17 0.05(3) −0.21±0.02
100 RHS (4.6) −0.85±0.60 0.03 −0.25 0.11 −0.03(13) −0.71±0.60
100 LHS (4.8) 0.13±0.01 0.04 0.00 0.01 0.03(1) 0.05±0.01
100 RHS (4.8) 0.01±0.01 0.01 0.00 0.00 0.00(1) −0.01±0.01
103 LHS (4.9) 0.29±0.03 0.09 0.00 0.06 0.01(2) 0.13±0.03
103 RHS (4.9) 0.31±0.07 0.03 0.00 0.06 0.05(3) 0.17±0.07

Table 3: The relations found in theπK-scattering. The tree level contribution to the LHS and RHS of
relation 1 is 3.01 and vanishes for the others. The NLO LECs part satisfies the relation. Notice the extra
factors of ten for some of them. All quantities are in the units of powers ofmπ+

5. ππ and πK scattering

If we consider theππ andπK system together we get two more relations due to the identities

[b5]Ci
=

[

c+
30

]

Ci
+

3
ρ

[

c−20

]

Ci
, [b6]Ci

=
1

4ρ
[

c−20

]

Ci
+

1
16ρ2

[

c+
11

]

Ci
, (5.1)

wherec−i j (c+
i j ) are expressed in units ofm2i+2 j+1

π (m2i+2 j
π ). We can express these relations in terms

of the threshold parameters (all quantities expressed in powers ofmπ+):

6
[

a1
3

]

Ci
= (1+ρ)

[

a+
3 +3a−3

]

Ci
, (5.2)

3
[

(1+ρ)2[

b2
2

]

Ci
+7(1−ρ)2[

a1
3

]

Ci

]

= (1+ρ)
[

7
(

1−4ρ +ρ2)[

a−3
]

Ci
+

[

a+
2 +2ρb+

2

]

Ci

]

. (5.3)

The numerical results are quoted in Tab. 4. The first relation does not work but the second is well
satisfied. If we look in the numerical results we see thata−3 plays a minor role in the RHS of the
second relation but is important in the first, so this could be the same problem ofrelation (4.8). A
related analysis can be found in [10].

6. Kℓ4

The decayK+(p) → π+(p1)π−(p2)e+(pℓ)ν(pν) is given by the amplitude [11]

T =
GF√

2
V⋆

usū(pν)γµ(1− γ5)v(pℓ)(V
µ −Aµ) (6.1)

whereVµ and Aµ are parametrized in terms of four formfactors:F , G, H and R (but theR-
formfactor is negligible in decays with an electron in the final state). Using partial wave expansion
and neglectingd wave terms one obtains [12]:

F = fs+ f ′sq
2 + f ′′s q4 + f ′ese/4m2

π + ftσπX cosθ + . . . ,

Gp = gp +g′pq2 +g′′gq4 +g′ese/4m2
π +gtσπX cosθ + . . . (6.2)

6
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[3],[4] NLO NLO NNLO NNLO remainder
[5],[6] 1-loop LECs 2-loop 1-loop

103 LHS (5.2) 0.34±0.01 0.12 0.00 0.16 0.00(4) 0.05±0.01
103 RHS (5.2) 0.38±0.03 0.12 0.00 0.05 0.04(2) 0.16±0.03
10 LHS (5.3) −0.13±0.01 −0.12 0.00 −0.05 0.02(2) 0.01±0.01
10 RHS (5.3) −0.09±0.02 −0.05 0.00 −0.02 −0.01(1) −0.01±0.02

LHS (6.4) −0.73±0.10 −0.23 0.00 −0.15 −0.05(6) −0.29±0.10
RHS (6.4) 0.50±0.07 0.19 0.00 0.10 0.03(4) 0.18±0.07

Table 4: The relations found betweenππ andπK-scattering lengths and between the curvature inF in Kℓ4

andπK scattering. All quantities are in the units of powers ofmπ+ .

Heresπ(se) is the invariant mass of dipion (dilepton) system, andq2 = sπ/(4m2
π)−1. θ is the angle

of the pion in their rest frame w.r.t. the kaon momentum andt −u = −2σπX cosθ . Using NNLO
ChPT results [8, 9] we find one relation between the quantities defined in (6.2) andπK scattering:

√
2
[

f ′′s
]

Ci
= 64ρFπ

[

c+
30

]

Ci
. (6.3)

This leads to a relation betweenπK threshold parameters andf ′′s which, with all quantities ex-
pressed in units ofmπ+ , reads:

√
2
[

f ′′s
]

Ci
= 32π

ρ
1+ρ

Fπ

[

35
6

(

2+ρ +2ρ2)[

a+
3

]

Ci
−

5
4

[

a+
2 +2ρb+

2

]

Ci

]

. (6.4)

Numerical results for (6.4) are shown in Tab. 4. The experimental resultsis taken from [5] for
f ′′s / fs and from [6] for fs. This should be an acceptable combination since the central value for
f ′s/ fs and f ′′s / fs from [6] are in good agreement with those of [5]. This relation is not satisfied: the
sign is even different on the two sides. Notice that, in both cases, we also see that the ChPT series
has a large NNLO contribution.

It has been already noticed, see [1] and Fig. 1, that ChPT, at present, underestimates the cur-
vature f ′′s . On the other hand there are indications that dispersive analysis techniques might help
solving this problem: Fig. 7 in [1] shows that the dispersive result of [13]has a larger curvature
then the two-loop result. Therefore, we do not consider this discrepancy a major problem for ChPT.

7. New fits of the NLO constants (preliminary results)

As remarked in [14], many NNLO calculations are now available in three-flavour ChPT. Be-
sides, new lattice and dispersive results and further experimental data are at our disposal too. A
study of the predictive power of NNLO ChPT is needed, and therefore also an update of theLi fit.
For this reason we are working on a new program to perform this fit with many more observables
implemented. So far we have included masses and decay constants,Kℓ4 formfactors,ππ andπK
scattering lengths and the scalar pion radius. For now we rely on the resonance estimates of theCi

used in [1], although our plan is to achieve more information on them.
Our first preliminary results are summarized in Tab. 5. In the second column we quote fit 10

of [1]. This was found using the available linear fit forKℓ4 of [6], FK/Fπ = 1.22, the kaon and

7



P
o
S
(
C
D
0
9
)
0
8
7

Determination of LECs and testing ChPT at order p6 (NNLO) Ilaria Jemos

 0

 1

 2

 3

 4

 5

 6

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

|F
S
|

sπ

LO

NLO

NNLO

reso only

NA48

E865 linear

Figure 1: The absolute value of theFs formfactor atsℓ = cosθ = 0 as a function ofsπ (in Gev2 units)
above and below threshold. The NNLO result nicely reproduces the linear fit quoted in [6], but not the large
negative curvature in [5]. The line at the bottom is the contribution coming from theCi , which has a positive
curvature.

fit 10 [1] fit 10 iso NA48/2 FK/Fπ All

103Lr
1 0.43 0.40±0.12 0.98 0.97 0.99±0.13

103Lr
2 0.73 0.76±0.12 0.78 0.79 0.60±0.22

103Lr
3 −2.35 −2.40±0.37 −3.14 −3.12 −3.07±0.59

103Lr
4 ≡ 0 ≡ 0 ≡ 0 ≡ 0 0.65±0.64

103Lr
5 0.97 0.97±0.11 0.93 0.72 0.53±0.10

103Lr
6 ≡ 0 ≡ 0 ≡ 0 ≡ 0 0.07±0.65

103Lr
7 −0.31 −0.30±0.15 −0.30 −0.26 −0.21±0.15

103Lr
8 0.59 0.61±0.20 0.59 0.48 0.37±0.17

χ2 (dof) 0.25 (1) 0.17 (1) 0.19 (1) 0.78 (4)

Table 5: Preliminary results for the fits.L9 ≡ 0.59×10−3 everywhere, as found from the vector pion radius
in [15]. See text for a longer discussion

.

eta masses with isospin breaking corrections included and settingL4 ≡ L6 ≡ 0. In the column
labeled fit 10 iso we quote the fit we find using the same input as fit 10 but without including
isospin breaking. As you see the two fits are in good agreement. The column NA48/2 relies on the
new experimental data from [5]. We checked that the fit does not change including the curvature
f ′′s . With this fit ChPT predicts the valuef ′′s = −0.90 to be compared with the experimental one
f ′′s = −1.58±0.064. Note that the fit in [5] shows large correlations between the slope andthe
curvature of theFs formfactor which have not been taken into account yet. The values ofL1 andL3

change drastically. The third column shows the fit obtained changing the ratioFK/Fπ to 1.19. This
affects mainlyL5 andL8. The last column shows the fit obtained lettingL4 andL6 free, and adding
a0

0, a2
0, a1/2

0 , a3/2
0 and the scalar pion radius. The value obtained forL4 is larger then expected.

Some more comment can be found in [16].
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8. Conclusions

We have performed a systematic search for relations between observables that allow a test of
ChPT at NNLO order in aCi-independent way. We studied in detail the relations for theππ, πK
scattering andKℓ4 since for these cases enough experimental and/or dispersion theory results exist.

The resulting picture is that ChPT at NNLO mostly works but there are troublesome cases.
The ππ system alone works well. TheπK system alone works satisfactorily but with some dis-
crepancies. The same can be said for the combinations of both systems. A common part in these
two cases is the presence ofa−3 . ComparingπK scattering andKℓ4 leads to a clear contradiction
which needs further investigation.
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