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1. Introduction

At low energies and small quark masses, the Green functions of quaektsican be analysed
in the framework of chiral perturbation theoryKT) [3, 4, 5]. The method allows one to work out
the momentum and quark mass dependence of the quantities of interestteraaticsand coherent
manner. It is customary to perform the quark mass expansion eitherdamgusa my = 0, with the
strange quark mass held fixed at its physical vajert), or to consider an expansion in all three
guark masses arouma, = my = ms = 0 (XPT3). The corresponding effective Lagrangians contain
low—energy constants ECs) that parametrise the degrees of freedom which are integrated out. The
two expansions are not independent: in a particular limit specified bglpwg reduces tg(pPT».

As a result of this, one can express tt&cs in the two—flavour case through the onesyirrs,
in a perturbative manner. The relations amount to a series expansion itrtahgesquark mass.
Generically,

msBo

r__ _
K _mzz_modmz“,z_ A (1.1)

Here, k' stands for any of the renormalized T, LECS, while Fy, By are theLECs at orderp? in
XPT3. The coefficientd,, (whose dependence on the choséris suppressed in the notation)
contain renormalizedecs from xPTs, and powers of the logarithm I%E—O, whereu denotes the
standard renormalization scale. Hérat orderp?N+1, one hasmy = N, and the corresponding
leading terndy,z ™ is generated by tree graphs)m®1s. The next-to-leading order term requires
a one—loop calculation, etc. In the following, we refer to the relations (&.faching relations
obtained bymatchingy P12 to X PT3 in the specific limit mentioned. The matching relations are use-
ful, because they provide i) additional information on tiges in xPT3, and ii) internal consistency
checks.

For theLECs at orderp? and p*, the matching was performed to one loop (to two loops) in
Ref. [5] (Ref. [1]), and for a subclass DEcs at orderp® to two loops in Ref. [2].

We comment on related work which is available in the literature.

i) The strange quark mass expansion of xtea, LEC B (F2B) was provided at two—loop accu-
racy in Ref. [6] ([7]).

ii) Matching of the ordem® LECs in the parity—odd sector was performed recently in Ref. [8].

iii) Analogous work was done in the baryon sector in Refs. [9, 10], amdefectromagnetic
interactions in Refs. [11, 12, 13, 14].

The outline of the talk is as follows. In Section 2, we illustrate the matching foritmevector
form factor at ordepp®. In Section 3, we give a short description of the method used to obtain the
matching relations in general. In Section 4 we display the structure of thisreswrderp? and
p?, and discuss in some detail the matching relation¥do illustrate its use, whereas Section 5
concerns the matching at ordgf. The final Section 6 contains concluding remarks. We refer the
interested reader to Refs. [1, 2] for more details, and for the full restittee matching relations.
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2. The pion vector form factor at order p*

We first illustrate how the relations between ttics emerge, and consider for this purpose
the vector form factor of the pion,

(" () |3 (Uyau — dyud)| 1T (p)) = (p+ PR (t) s t = (p' = p)?, (2.1)

in the chiral limitm, = mq = 0. In the three—flavour case, at one—loop order, the form factdsrea
in d space—time dimensions

t 2Lt
Fua(t) = 1+ =5 [@(t.0:d) + 30(t, My; d)] + ?g (2.2)
0 0
The loop functior® is given by
d—4
o(t,M;d) = d/Z/ dut? [M —@)'7 2.3)

Itis generated by mesons of madsunning in the loopMk denotes the kaon massat=my =0,
at orderp?]. Furthermoref, stands for the pion decay constantat= my = ms = 0, andLg is
one of theLECs in xPT3 at orderp®.

In xPTy, the corresponding one—loop expression is

Fualt) = 1+ 5 @t 0,d) — (2.4)

F2 F2°
whereF denotes the pion decay constantmat= myq = 0,ms # 0, and wherdg is one of the
low—energy constants igPT, at orderp*. If one identifiesk with Fy at this order, the expres-
sionsky 3 andFy > still differ in the coefficient of the term proportional tpand in the contribution
®(t,Mk;d), which is absent in the two—flavour case, because kaons are integuaiadhat frame-
work.

To proceed, we note that the loop functi®t, M;d) is holomorphic in the completx-plane,
cut along the real axis for Re> 4M2. Thereforep(t,0;d) develops a branch point at= 0,
whereasb(t, Mk; d) reduces to a polynomial &tM2 < 1,

®(t,My;d) = Z>¢' M. d ( ) . (2.5)

Let us discard for a moment the terms of ordand higher in this expansion. It is then seen that
Fv 3 reduces td~, , provided that we set

1
lo = —2Lo— 5®o(My, ). (2.6)

At d = 4, this relation reduces to the one between the renormalises |y andLy worked out in
Ref. [5],

15 (1) = —2L5(u) + Tinz (In Bzms + 1) (2.7)

This expressions is indeed of the form displayed in Eqg. (1.1), dith= 0, whereasl is simply
the right hand side of Eq. (2.7), generated by the one—loop graplsgdeoed here. We conclude
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that, at low energies, the expression of the vector form factgerims reduces to the one in the
two—flavour case, up to polynomial terms of ordeand higher. An analogous statement holds
true for all Green functions of quark currents built from up and dowarks alone, see below.

We now come back to the higher—order terms in Eq. (2.5). We start with tleeattion that
the term of ordet' contributes at ordet ™! to Fv2 — those withl > 1 are thus of the same chiral
order inFy > as the ones generated by graphs withl loops inxPT,. Apparently, one runs into a
problem with power counting here: the low—energy expansion of the@og-€ontribution iny PT3
amounts to terms of arbitrarily high orders in the @k x SU(2), expansion ofy . Indeed, this
is a rule rather than an exception: Because the strange quark masstedcasia quantity of chiral
order zero inyPTs, the counting of a quantity like/MZ is different in the two theories. As a result
of this, higher—order loops ixP T3 in general start to contribute already at leading ordegrim,. A
systematic and coherent scheme is obtained by countifupp contributions — and, in particular
the relevantEcs — to be of ordeR”, and the strange quark mass to be of oftiér see Refs. [1, 2].

3. Matching of generating functionalsin xpT, and xPT3

We have developed in Ref. [1] a generic method for the matching, whictsedan the path
integral formulation ofyPT. The idea of this method is not to compare matrix elements that can
be obtained in both formulations, but rather to restrict the three—flavoaryttseich that it only
describes the same physics as the two—flavour formulation. Then, oneEstpeir generating
functionals containing all the Green functions and reads off the matchitingoECs.

TheLECs do not depend on the light quark massgsndmy. Since both theories are expan-
sions around vanishing quark masses, we maynget my = 0 for the purpose of the matching.

The comparison of the generating functionals is in fact a comparison obsdliple Green
functions, which depend on the external fields. Obviously, they canlmlyompared with each
other if they depend on threameexternal fields. Therefore, the external fieldsx@fT; need to be
restricted to those gfPT.. We also have to assure that the heavy me&boos ) running in the
loops do not have the possibility to go on—shell. Therefore, we consideldition the case where
all external momenta are small compared to the kaon mass. The physic$3)RSABU(3). then
reduces to the one of §P)r x SU(2),.. We refer to this limit as thewo—flavour limit

The LECs are the coefficients of local chiral operators in the effective Lagaan Once one
evaluates the generating functional with the effective Lagrangian,dmetid local terms also many
non-local contributions are generated, botty#m, as well as inyPT3. However, the non—local
contributions, appearing igPT3 as the result of low-energy expansion, will be exactly canceled
by xPT, counterparts once the matching is performed. Therefore, to obtain theingatefations,
it is sufficient to restrict oneself to the local parts in the evaluation of thergging functional of
XPTa.

4. Lecsat order p2 and p*

All the relations may be put in the form of Eq. (1.1). To render the formulaemompact, we
found it convenient to slightly reorder the expansions, such that trmyniea series in the quantity
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I\Z}%, which stands for the one—loop expression of the (kaonrhasshe limit m, = my = 0, see
e.g. [5]. Theresultis

Y=Y [1+aYX+bYX2+ﬁ(X3)]7 Y=F.,2,
FZ
Il =a+xb+00Q), (i#7), lr=—20"ta+xb+00d), (4.1)
8Boms
MZ
X — K, N::|_67-[27 Z:FZB, ZOZFOZBO
NF;

We denote the contributions proportionalgo(b;) asNLO (NNLO) terms, generated by one—loop
(two—loop) graphs inyPTs. Note thatl; receives a contribution at leading ordeoj as well,
proportional tong?, in agreement with the remarks made in the Introduction. dd@ndNLO
terms were determined in Ref. [5] more than 25 years ago, whereastleetermsb; were only
recently worked out [1]. They have the following structure,

b= po+ p1l + P2/ , (4.2)

wherelx = In(l\ﬁ}%/uz) is the chiral logarithm, and where we have dropped for simplicity the index
i. The polynomialsp; are independent of the strange quark mass, and their scale depemglenc
such that in combination with the logarithms it adds up to the scale independamitgi. In
other words, the scale dependencd; a$ exclusively generated by the one—loop contribuan
The explicit results for the polynomials are displayed in tables 2-4 of Ref.[1].

Let us now illustrate, in the case of the low-energy condtgrihe strange quark mass depen-
dence and the information one can obtain from the pertinent matching rel&ierfiound [1] at
two—loop order the result

1 17433 1 1
r_ = r I B P S . r
15 = 24N(£K+1)+4|_2+x{N[288 24n3+16p1} 16N(2c:13 cn)
13 r 3,
+[§ZN~—8L2—2L4€K+—§N£K}, 4.3)

where
p1 = V2Cly(arcco$1/3)) = 1.41602, Clp(0) = —;/Oed(p In (4sirf ). (4.4)

On the right—hand side, th# (pf) LECcs L3 (051713) occur, aside from known quantities. Our def-
inition of theC; differs from the one of Ref. [15] by a factor 652. Explicitly, the %—Lagrangian

reads
94

57
LM =F2YoR, £V =F?Y GO (4.5)
k=1 k=1
for two and three flavours, respectively. [Note that the 57 termng(z) are not independent [16].
We adhere to the original notation used in Ref. [15] for later convenignce
We now note that), was determined in Ref. [17] from a dispersive analysis to rather high
precision, and., 3 are also quite well known [18]. As a result of this, the relation (4.3) allows
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one to constrain the value of the combinatid@i 2— C}, [2]. We introduce the scale independent
quantity

My
pz’

I, = 48m215(u) —In (4.6)

with M;=139.57 MeV, and illustrate the strange quark mass dependem_gmdfig.l (left panel),

8

s [ NLO -
ror
F --- NNLO, 2C, -C', =0 1

r roo_ -5 7
— NNLO, 2C',-C"}, =0.610°| |
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r r -5
2c' ¢}, [107]

Figure 1: Left panel: Strange quark mass dependende. s mentioned in the texMy denotes the kaon
mass at one—loop accuracy in the limi = my = 0. The physical value afns corresponds tdlk ~ 485
MeV. We show thenLo (dotted line) as well as thenLo result with two choices fo€} ; ;5: The dashed line
corresponds to@ ;—Cj; = 0, while the solid line is evaluated a2, —C’; = 0.6 x 10>, which reproduces
the prediction from the dispersive analysis (data poinhwinall error bar). Right panel: Dependence of
I, on the p® LECs A5 —Cy, at the physical value ofs. The dashed—dotted line with the error band
corresponds to the data point and its error bar in the lefebarhe running scale is taken gt= M, = 770
MeV, andFRy = F; = 924 MeV.

Wherel_z is shown as a function d12, atpu =M, =770MeV,R = Fr = 924MeV. The dotted
line stands for thevLo approximation, and th&NLoO result is shown for two choices @, ;4
the dashed (solid) line displays the cag§2-C!, = 0 (2Cl,—C!, = 0.6-10°5). The solid line
is constructed such that at the physical value of the strange quark timassc I agrees with the
measured one [17] , within the uncertainties.

We shortly comment on th&/, ;5 that occur in this application. In Ref. [19]; 5 is worked out
from an analysis of scalar form factors. While the result is of the or@§2C}, = 0.6- 107>, its
precise value depends considerably on the input used, see table 2 [hdRé&r more information.

In Ref. [20, table 12 (published version)] estimates for hatbs C;, 5 are provided: the authors
find that these do not receive a contribution from resonance exéhaatﬂgading order in largsc
and therefore vanish at this order of accuracy. Because the seeécatthis happens is not fixed
a priori, that observation is not necessarily in contradiction with the alesudtr

The impact of theseECs onl_z is rather enhanced at physical strange quark masses. This is
illustrated in Fig.1 (right panel). Taking the&cs Lj at face value, the window for a possible choice
of theC}, 5 is then very narrow to be in agreement with the data from a dispersivesimaly pin
down theC{l13 to good precision including an error analysis requires, however, a thoreugh
exploration. In particular, one has to take into account that in the fits ppeefbin Ref. [18], an
estimate of ordep® counterterm contributions was already used.
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5. Lecsat order p®

The evaluation of all matching relations at two—loop order forithes at orderp® is very
complicated. To ease the calculations, we did not deal with the full frameaw®&&f. [2], but rather
switched off the sourcesand p (while retainingms). This yields the following simplifications:

i) the solution of the classicaoMm for the eta—field is trivialn = 0;
ii) there is no mixing between the and ther®® fields.

Point i) greatly simplifies the transition from tix@ T3 building blocks of the monomials to those of
two flavours, as it suppresses any effects from the eta, whereasdipeliminates many possible
graphs and hence considerably reduces the requested labouxaFRwle, in this restricted frame-
work, the one—patrticle reducible graphs (two one—loop diagrams linkedsingle propagator) do
not contribute to the matching, see Ref. [2].

Aiming for the ‘Z-monomials in the generating functional requires the evaluation of many
graphs with sunset-like topology. In the two—flavour limit, where one is iniedes the local
contributions only, one can simplify the loop calculations by using a shortndistaxpansion
for the massive propagators. This simplifies drastically the involved loopradtediowever, the
contributions from individual graphs are not chirally invariant. Collectiegns stemming from
different graphs to obtain a manifestly chirally invariant result is ratheri®rsome. Since we are
interested in the local terms only, we use a shortcut which is based on gaagancé: one may
choose a gauge such that at some fixed space—timexpoihie totally symmetric combination of
up to three derivatives acting on the chiral connection vanish,

ru(Xo) =0 ,0{urv} (Xo) = 0,5{uavrp}(Xo) = O,d{uavaprg}(xo) =0. (5.1)

Up to four ordinary derivatives are then indistinguishable from the fyllpmetric combinations
of covariant derivatives:

9t (%) = Oy f(X0) ,0u0y f(X0) = 3{0u, 0y} f(x0) = 3{0y, 0y} f (x0) ,etc. (5.2)

This allows us to write even intermediate results in a manifestly chiral invariamenan

To check our calculations in one corner, we matched the avaijgbte- andy PT3—results for
the vector—vector correlator [21] and for the pion form factor, wdrlat in Refs. [22, 23]. In this
manner, we found that our relations fdy; andcg; — c;; agree with the results of Refs. [22, 23].
Needless to say that this is quite a non—trivial check.

As already stated in Ref. [16], the monomiak can be discarded from thgf—Lagrangian
for xPT,. Therefore, the matching relations will certainly be a combination of sgnagéd c5.
Due to the restricted framework, only relations f@cs not involving monomials dependent on
the sources or p are nontrivial. In the restricted framework, there is an additional relatioong
the remaining S(2)-monomials:

3PL— 3P+ Py — PPos+ 5Pas+ 2Pog — 3Pag — 5Po0 + P30 — Par+ 2P — 5Pas
+ 3Pss— 3Ps7— ¥ P30+ 2Pao+ SPa1— 3Pa2— 3Pus+ 3Pas— Pis—Psa—Ps3=0.

lwe are grateful to H. Leutwyler for pointing out this possibility to us.

(5.3)
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I X I X X
r 1Ar r 3Ar r r 9Ar 1Ar
G+ 30 10 Cp—3C1—C7 |19 Cy3tgC+3Cy
r 3Ar r 3Ar 1Ar r 3Ar 1Ar
C3— 20 11 cy3+3C+3C7 | 20 Cyy—3C —3C7
r 5Ar r r r 3Ar 1Ar
Coat 3201 12 36— 21 Cys+ 3501+ 307
I r r r r
Cys —Cp 13 o+ 22 ¢y
e — 3¢ 14 - 23 o+ 3+ i
26 201 38 511 201+ 5Co7

r r r r 11r 1ar r
Cogt20,—C7 | 15 G+ 5C1+7C7 | 24 G5
r 3Ar 1Ar r 5Ar 1Ar r 3Ar 1Ar
Cogt+5C1+7C7 | 16 Cuo—3C1—3C7 | 25 Cozt 301+ 3507
r 3Ar 1Ar r 7 Ar 1Ar r
C0— 81— 3C7 | 17 Cu—3C—35C7 | 26 C5

© 00 N oo o b~ w N P

r 3Ar 1Ar r r r
CartaCit3C7 |18 Gty 27 Cs

Table 1: The quantities; in Eq. (5.4)

Because theow is different in the full framework, this relation is no longer valid there. Weduse
Eq. (5.3) to exclude the monomiB| from our consideration. As a result, we give the matching
for the 27 combinations off displayed in table 1. In the full framework, an additional matching
relation (apart from the ones for the monomials involving the souscasd p) for ¢ could be
worked out, yielding the only missing piece in the matching fordheEcs worked out here.

The final result may be written in the form

x = p” +p Mtk + pP4Z +O(ms) , (5.4)
wherex; denotes one of the7 linear combinations of the{ displayed in table 1. The explicit
expressions for the polynomiaﬁ”) in the xPT3—LECS are displayed in tables 2 and 3 of our
article [2].

6. Summary

In this talk, we have discussed a general procedure [1, 2] to wortheunatching relations
between the.ECs in xPT, and xPTs in a perturbative manner. For th&cs at orderp? and p?,
and for a subset of those at org#; the relations are now available at two—loop order. The method
could be used with only moderate adaption to work out more general mataiatmns, like the
ones foryPTy_1 to xPTy. To obtain the matching relations of the the remainiegs at orderp®
to the same accuracy would require, however, a very big amount of work

We have in addition illustrated the use of the results in the casge @6 precise knowledge,
together with the known values &f,, L3, in principle allows one to pin down the combination
2C;;— Ci; rather precisely.

We refer the interested reader to our articles Refs. [1, 2] for the matcliatpons found, and
for further details on the method used.
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