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1. Introduction

As the last speaker at Chiral Dynamics 2009, it is my pleasureto thank the organizers for
putting together such an interesting and successful meeting. Anyone who has ever organized a
conference knows that when a meeting runs as smoothly as thisone does, it is no accident but
rather it is on account of meticulous planning.

However, while in many meetings the final talk is a conferencesummary, mine will not be.
That is because

i) the organizers told me I didn’t have to

ii) in answering the questions—should this conference be summarized? and should I be the one
to do it?—I fall back on a theorem which says that whenever a question is asked in the title
of a physics paper, the answer is always no.

iii) I was always intrigued by the Isgur technique. Nathan was a fine speaker and way asked to
give many summary talks.He would always say something like "This was a great meeting
there were so many interesting ideas presented that there isno way that I could present a
reasonable summary, so I won’t try. Rather I will discuss a few ideas of interest to me." This
is the model I shall adopt.

In thinking about the evolution of the Chiral Dynamics meetings during the past fifteen years,
it is interesting to compare the first meeting at MIT in 1994 with the present one at Bern. There are
a number of important differences. At the MIT meeting, we were in the midst of a withering heat
wave, with temperatures each day in the nineties, and the sessions (and meals!) all took place in
the (air-conditioned) Kolcker room in the physics department. We all stayed, however, in the MIT
dorms which werenot air-conditioned.

In 2009, we have the much more seasonable 70 degree temperatures in Bern and we are staying
in comfortable hotels. Sessions are held in spacious university lecture halls. Nevertheless some
things haven’t changed. That includes many of the people—myself, Aron Bernstein, Juerg Gasser,
Heiri Leutwyler, Steve Weinberg, etc. Also, the same excitement about chiral physics which was
prevalent at MIT is present here in Bern, and so in my talk I want to tell you about some of the
ideas that excite me.

2. K → 3π

One subject which is of great interest to me is that ofK → 3π decays, which was also the
subject of my 1969 thesis[1]. In this thesis I used what was called current algebra/PCAC methods
which allowed one to relate the amplitude forK → 3π decay in the limit as one of the pion’s four-
momentum vanishes to an experimentalK → 2π amplitude[2]. One does this by parameterizing
theK → 3π via

< π+π−π0|Hw|K
0 >= a+ bs0 + c(s+ + s−)+ . . . (2.1)

Now require

lim
qπ0→0

< π+π−π0|Hw|K
0 >=

−i
Fπ

< π+π−|[F3
5 ,Hw]|K0 > (2.2)
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But since weak currents are left handed we have

[F3
5 ,Hw] = [I3,Hw] (2.3)

so
lim

qπ0→0
< π+π−π0|Hw|K

0 >=
−i
2Fπ

< π+π−|Hw|K
0 > (2.4)

and similarly for the limits asqπ+ ,qπ− → 0. The results of this procedure were surprisingly good
predictions for both amplitudes and slopes and allK → 3π amplitudes[1].

Now fast forward to 1990. At this point Joachim Kambor, a student of Daniel Wyler, wrote
his thesis onK → 3π decays from the standpoint of chiral perturbation theory[3]. This was a
substantial calculation since there are three terms at lowest O(q2) order and forty-eight atO(q4).
Of course, these results must be consistent with the "old" current algebra/PCAC limits and using
this constraint, I found a number of typos in the thesis—suchmethods can provide a useful check
on chiral calculations[4].

It is interesting to ask why such a consistent one-loop calculation had not taken place before
this time. Indeed Gasiorowicz and Geffen had written a comprehensive tree level chiral Lagrangian
at the end of the 1960’s[5] while Pagels and others had lookedat the nonanalytic parts of the loop
corrections during the 1970’s[6], so in principle the Kambor analysis could have been done at that
time. Why wasn’t it? I think the reason is that at the time, especially because of the success of
the Weinberg-Salam unification of weak and electromagneticinteractions, we were focused on the
idea of producing interactions which were renormalizable.Only with Weinberg’s 1979 paper[7],
which emphasized the usefulness of nonrenormalizabile effective field theories, did this mindset
change and this led to the development of chiral perturbation theory by Gasser and Leutwyler in
1984[8].

The current state of the art is evidenced in papers by Bijnenset al.[9], by Prades et al.[10],
and by others which have extended the one loop corrections toinclude effects of isospin breaking
and electromagnetic corrections. The results are detailedand very successful fits to very precise
K → 3π data including terms up to quadratic order.

2.1 π −π Scattering Lengths

In the mean time there have also been interesting chiral developments in the area of pi-pi
scattering lengths. In the isospin-symmetric limit, theπ −π scattering amplitude has the form

Tαβ ;γδ (s, t,u) = δαβ A(s, t,u)+ δαγ ;βδ A(t,u,s)+ δαδ δβγ A(u,s, t) (2.5)

Then Weinberg’s 1966 result from lowest order chiral symmetry is that[11]

A(s, t,u) =
s−m2

π
F2

π
(2.6)

It is conventional to present these results in an isotopic spin basis wherein[12]

T0(s, t,u) = 3A(s, t,u)+ A(t,u,s)+ A(u,s, t)

T1(s, t,u) = A(t,u,s)−A(u,s, t)

T2(s, t,u) = A(t,u,s)+ A(u,s, t) (2.7)

3



P
o
S
(
C
D
0
9
)
1
1
3

Closing Talk Barry R. Holstein

in terms of which we find the Weinberg scattering lengths

a0
0 =

7m2
π

32πF2
π

, a2
0 = −

m2
π

16πF2
π

, a1
1 = −

m2
π

24πF2
π

(2.8)

In the case ofa0
0 this gives the result

LOa0
0 = 0.16, LOa2

0 = −0.05 (2.9)

In 1984 Gasser and Leutwyler determined the one loop chiral correction to be

NLOa0
0 = 0.20 (2.10)

Then in 2001 Colangelo, Gasser, and Leutwyler presented theresults of an all orders analysis using
the Roy equations[13]

Roya0
0 = 0.220±0.005 Roya2

0 = 0.044±0.001 (2.11)

In the meantime it had been pointed out by Stern and others that these values corresponded to the
assumption that[14]

< 0|q̄q|0 >

F2
π

≃ 1GeV

and that it was also possible that
< 0|q̄q|0 >

F2
π

<< 1GeV

leading to the so-called "generalized chiral perturbationtheory", wherebygχ pta0
0 = 0.26.

On the experimental side there have been two determinationsof these S-wave scattering
lengths. One is via use of the Fermi-Watson theorem to extract the scattering lengths fromKℓ4

data, which yields[15]
a0

0 = 0,221±0.026 (2.12)

More interesting and relevant to our discussion is the use ofthe cusp structure of final state
interactions inK → 3π to measure these scattering lengths. This phenomenon is perhaps better
known in the analysis of neutral pion photoproduction in thethreshold region[16], wherein there is
interference between the direct amplitude for

γ p → π0p

and the rescattering diagram
γ p → π+n → π0p

The result for the S-wave (E)+) amplitude is

E0+(γ p → π0p;s) = eiδ0(s) [A(s)+ iq+β ] (2.13)

whereq+ = 1
2

√

s−4m2
π+ is the charged pion momentum and

β ∼ E0+(γ p → π+n)aπ+n→π0 p
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Then above theπ+n thresholdq+ is real and

|E0+(γ p → π0p)|2 ∝ |A(s)|2−q2
+β 2 (2.14)

and is a smooth function ofs. On the other hand in the region

(mp + mπ0)2 < s < (mn + mπ+)2

we haveq+ = i|q+| and

|E0+(γ p → π0p)|2 ∝ |A(s)|2−β 2|q+|
2−2A(s)β |q+| (2.15)

The term linear in|q+| produces the unitarity cusp and has been clearly seen in experiments at
MAMI.

The same phenomenon occurs in theK → 3π andη → 3π systems. Specifically in the decay
K+ → π+π0π0, there is an interference between the direct amplitude and the rescattering diagram
involving K+ → π+π+π− → π+π0π0. This was seen experimentally at Frascati and was inter-
preted by Cabibbo[17]. Later analysis by Cabibbo and Isadori[18] and by a Bern collaboration has
led to a measurement of botha0 anda2[19]. Preliminary results from NA48/2 are[20]

a0 = 0.261±0.006±0.003±0.013 and a2 = −0.037±0.009±0.013 (2.16)

and are in good agreement with the predictions of conventional chiral perturbation theory.

3. Electromagnetic Polarizabilities

A longtime interest of mine has been that of electromagneticpolarizabilities. The simplest of
these are the electric (magnetic) polarizabilityαE (βM) which is the constant of proportionality be-
tween the induced electric (magnetic) dipole moment and an applied electric (magnetic) field[24].
In the case of the electric field we have

~p = 4παE~E (3.1)

which corresponds to an energy density

uE = −2παE~E2 (3.2)

while in the case of a magnetic field we have

~m = 4πβM~H (3.3)

which corresponds to an energy density

uM = −2πβM~H2 (3.4)

One can measure the polarizability of an elementary system by Compton scattering. That is, for a
particle of chargeQ, the Hamiltonian which describes the interaction with an external electromag-
netic field is

H =
(~p−Q~A)2

2m
−

1
2

4παE~E2−
1
2

4πβM~H2+ . . . (3.5)
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which leads to a Compton scattering amplitude

T = ε̂ · ε̂ ′(−
Q2

m
+ ωω ′4παE)+ ε̂ ×~k · ε̂ ′×~k′4πβM + . . . (3.6)

This leads to a cross section

dσ
dΩ

=
α2

m2

(

ω ′

ω

)2[

1
2
(1+cos2 θ)−

mωω ′

α

(

αE + βM

2
(1+cosθ)2 +

αE −βM

2
(1−cosθ)2

)]

(3.7)
so that by measuring the differential cross section one can extract values of the electric and mag-
netic polarizabilities. In the case of the proton, a series of measurements at MAMI, Saskatoon, and
Illinois have yielded the values[21]

α p
E = (12.0±0.6)×10−4 fm3 and βM = (1.9∓0.6)×10−4 fm3 (3.8)

These are fundamental properties of the proton we have learned a number of things from such
measurements:

i) the electric polarizability provides a measure of the "stiffness" of a system. In the case of the
hydrogen atom, there exists an exact result[22]

αH
E =

9
2

a3
B =

27
8π

Vol. (3.9)

whereaB is the Bohr radius and Vol. = 4
3πa3

B is the volume. In the case of the proton we
have

α p
E ∼ 3×10−4Vol. (3.10)

which says that the proton is a much stiffer system than a hydrogen atom. This can be
understood in a handwaving fashion by noting that

α p
E/Vol.

αH
E /Vol.

∼
EH

bind/m

E p
bind/m

∼
α2

em

α2
strong

∼ 10−4 (3.11)

ii) the ∆ pole makes a strong paramegnetic contribution∼ 10×10−4 fm3[23] so there must be
a strong diamagnetic contribution to cancel much of this

iii) this cancelation presumably comes from the pion cloud—indeed a simple valence quark
model gives

quarkα p
E = 2αmp < r2

b >2>> expα p
E (3.12)

The importance of the pion cloud suggest the use of chiral perturbation theory and Bernard, Kaiser,
and Meissner have calculated[25]

α p
E =

αg2
A

48π2F2
π mπ

[

5π
2µ

+18logµ +
33
2

+O(µ)

]

= 7.4×10−4 fm3

β p
M =

αg2
A

48π2F2
π mπ

[

π
4µ

+18logµ +
63
2

+O(µ)

]

= −2.0×10−4 fm3

(3.13)
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whereµ = mπ/Mp. If we retain only the leading piece here, which correspondsto O(q3) heavy
baryon chiral perturbation theory, we have

α p
E = 10β p

M =
5g2

A

96πF2
π mπ

= 12.2×10−4 fm3 (3.14)

which is in spectacular agreement with experiment. However, this clearly accidental since anO(q4)

calculation yields[26]

α p
E = (10.5±2.0)×10−4 fm3 and βM = (3.5±3.6)×10−4 fm3 (3.15)

Of particular interest is the charged pion polarizability,whereO(q4) chiral perturbation theory
predicts[27]

απ+

E + β π+

M = 0 and απ+

E −β π+

M = 5.4×10−4 fm3 (3.16)

and a two loop calculation yields small corrections. On the experimental side the polarizabilities
have been measured in three different ways:

i) a Primakoff effect measurement by Antipov et al. using thereactionπ+Z → π+γZ has
given[28]

απ+

E = (6.8±1.4±1.2)×10−4 fm3 (3.17)

ii) a MAMI experiment involving the reactionγN → γπ+N attempted to extrapolate to the pion
pole and yielded[29]

απ+

E −β π+

M = (11.6±1.5±3.0±0.5)×10−4 fm3 (3.18)

iii) a SLAC experiment utilizing the reactionγγ → π+π− has given[30]

απ+

E = (2.2±1.6)×10−4 fm3 (3.19)

Obviously there is a problem here and the hope is that COMPASSwill come to the rescue by
redoing the Antipov experiment. We look forward to this important measurement.

The future of this field lies is the measurement of spin-dependent polarizabilities. These can
be understood by realizing that if we consider the excitation and deexcitation of a system then the
electric polarizability can be written asαE1E1 while the magnetic polarizability isβM1M1. If we
introduce spin, then four additional structure constants are involved and the effective Hamiltonian
is[31]

H = −
1
2

4π
[

γE1E1~σ ·~E × ~̇E + γM1M1~σ · ~H × ~̇H

+ 2γE1M2σiE jHi j −2γM1E2σiH jEi j] (3.20)

whereEi j = 1
2(∇iE j + ∇ jEi). Heavy baryon predictions atO(q3) are available

γ p
E1E1 = −5γ p

M1M1 = 5γE1M2 = 5γM1E2 = −
1

πmπ
α p

E (3.21)

However, each of these structure constants also has a large pion pole contribution

γ p
E1E1 = −γ p

M1M1 = −γE1M2 = γM1E2 =
2.4

πmπgA
α p

E (3.22)

which must be subtracted off in order to reveal the dynamicalquantities. A program in this regard
is underway at Hiγs and at MAMI. We anxiously look forward to these measurements.
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4. Conclusion

These are only two of many interesting topics which have beencovered at this meeting. On
account of space limitations, we will end our discussion here.
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