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We study the relevance of different renormalization schemes in Resonance Chiral Theory. The

SS−PPcorrelator is explicitly computed at the one-loop level. Demanding the operator product

expansion behaviour at short distances produces a new set ofconstraints, as some logarithmic

terms are absent at high energies. Likewise, the loops induce subleading corrections in 1/NC to

the leading-order constraints, the Weinberg sum rules. We find that the short-distance conditions

from a minimally subtracted scheme generate large uncertainties which, alternatively, can be

largely simplified in other schemes.
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1. Introduction

The effective field theory (EFT) approach is a very powerful tool for the investigation of Quan-
tum Chromodynamics (QCD) at long distances. Chiral Perturbation theory (χPT) [1, 2] is the EFT
for the description of the chiral (pseudo) Goldstones in thelow energy domainE � ΛH ∼ 1GeV,
with ΛH typically the scale of the lowest resonance masses. Recent progress has allowed to carry
χPT up toO(p6), i.e., up to the two-loop level [3].

In the intermediate resonance region,ΛH
<∼ E <∼ 2GeV, χPT stops being valid and one must

explicitly include the resonance fields in the Lagrangian description. Resonance Chiral Theory
(RχT) describes the interaction of resonance and pseudo-Goldstones within a general chiral in-
variant framework [4, 5]. Alternatively to the chiral counting, it uses the 1/NC expansion of QCD
in the limit of large number of colours [6] as a guideline to organize the perturbative expansion.
At leading order (LO), just tree-level diagrams contributewhile loop diagrams yield higher order
effects.

The infinite tower of mesons contained in large–NC QCD is often truncated to the lowest
states in each channel, the so called single resonance approximation (SRA). This approximation
has led to successful predictions ofO(p4) andO(p6) low-energy constants (LECs) [4, 5, 7, 8, 9].
However, the study of Regge models with an infinite number of mesons has shown that if one
keeps just the lightest states with exactly the same couplings and masses of the full model then
one get wrong values for the LECs [10]. Likewise, that analysis finds that the truncated theory
do not produce the right short-distance (SD) behaviour. Thus, in a matching with the OPE power
behaviour the parameters of the truncated theory will become shifted in order to accommodate
the right short-distance dependence. Chiral symmetry ensures the proper low-momentum structure
of the RχT amplitudes aroundp2 = 0 but their high energy behaviour is not fixed by symmetry
alone. Nevertheless, one knows that for large Euclidean momenta,(−p2) >∼ 2 GeV2 the SS−PP
correlator is expected to follow a vanishing behaviour prescribed by the OPE. In that sense, the
matched amplitude can be understood with the help of Padé approximants as a rational interpolator
between the deep Euclideanp2 = −∞ and the low-energy domain aroundp2 = 0 [11, 12]. The
Weinberg sum-rules (WSR) [13] yield the most convenient parameters for the interpolation rather
than accurate determinations of the resonance couplings.

Not much is known about the extension of RχT beyond the tree level approximation. Al-
though some theoretical issues on the renormalizability ofRχT still need further clarification [14],
several chiral LECs have been already computed up to NLO in 1/NC through QFT one-loop cal-
culations [15], dispersion relations [16] and even analyzed with the help of renormalization group
techniques [17]. Here we present the basic ideas of the work in Ref. [18], where theSS−PPcorre-
lator is computed up to next-to-leading order in 1/NC (NLO). The one-loop amplitude is then taken
as an improved interpolator between long and short distances and the corresponding modifications
to the former WSRs are extracted. The amplitude is first computed within the subtraction scheme
of χPT [2]. However, though equivalent at low energies, some appropriate schemes are found to
be more convenient and to introduce less uncertainties in the SD constraints.
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2. Weinberg sum rules at leading and next-to-leading order

The two-point Green functionSS−PPwe are interested in is defined by

Πab
S−P(p) = i

∫

d4xeip·x〈0|T[Sa(x)Sb(0)−Pa(x)Pb(0)]|0〉 = δ abΠ(p2) , (2.1)

with Sa = q̄ λa√
2
q andPa = iq̄ λa√

2
γ5q, beingλa the Gellmann matrices (a= 1, . . .8).

For convenience, the RχT Lagrangian can be organized in the formL =LGB+LR+LRR′ +

. . . , whereLGB contains just Goldstone bosons and external sources,LR includes operators with
also one resonance fieldR, etc. LGB is provided by theO(p2) χPT operators and the terms with
one resonce field are given in the SRA by [4]

LR =
FV

2
√

2
〈Vµν f µν

+ 〉+ iGV

2
√

2
〈Vµν [u

µ ,uν ]〉+ FA

2
√

2
〈Aµν f µν

− 〉+cd〈Suµ uµ〉+cm〈Sχ+〉+ idm〈Pχ−〉,
(2.2)

where at tree-level operators with two or more resonances donot contribute.
If one computes the one-loop correlator, the perturbative result shows the form [16]

1

B2
0

Π(p2) =
2F2

p2 +
16c2

m

M2
S− p2

− 16d2
m

M2
P− p2

+ ρ(p2) , (2.3)

with ρ(p2) containing the renormalized loop contributions and other tree-level contributions sub-
leading in 1/NC [16, 18]. The correlator has then the high-energy expansion[19],

1

B2
0

Π(p2) = ∑
k=0,2,4...

1

pk

(

α(p)
k +α(`)

k ln
−p2

µ2

)

. (2.4)

The requirement that the amplitude follows the high energy OPE behavior1 Π(p2)
p2→∞−→ 1/p6

produces the SD constraints [19] for the log termsα(`)
0 = α(`)

2 = α(`)
0 = 0, and the non-logarithmic

conditionsα(p)
0 = 0 and

α(p)
2 = 2F2+16d2

m−16c2
m+A(µ) = 0, α(p)

4 = 16d2
mM2

P−16c2
mM2

S+B(µ) = 0. (2.5)

At LO in 1/NC there are no logs (α(`)
k = 0). The remaining non-logarithmic constraints require the

absence of local terms (α(p)
0 = 0) and the usual (large–NC) Weinberg sum-rules 8c2

m−8d2
m−F2 = 0,

c2
mM2

S−d2
mM2

P = 0 [7, 13]
At NLO, the WSRs gain the subleading correctionsA(µ) andB(µ) [16, 18]2. Notice that now

1The tiny dimension four condensate1
B2

0
〈OSS−PP

(4) 〉 ' −12παSF4 will be neglected in this work [7, 20].
2If one considers just the RχT LagrangianLGB+LR [4], the NLO termsA(µ) andB(µ) result [18]

A(µ) = −3d2
mM2

P

π2F2

(

ln
M2

P

µ2 −1

)

+
3c2

mM2
S

π2F2

(

ln
M2

S

µ2 −1

)

+
6c2

dc2
mM2

S

π2F4

−6cdcmM2
S

π2F2

(

ln
M2

S

µ2 +
1
4

)

+
9c2

dM2
S

4π2F2

(

ln
M2

S

µ2 +
1
2

)

+
9G2

V M2
V

8π2F2

(

ln
M2

V

µ2 +
1
2

)

,

B(µ) = −3d2
mM4

P

2F2π2 +
9c2

dc2
mM4

S

F4π2 +
3c2

mM4
S

2F2π2 − 6cdcmM4
S

π2F2 − 9c2
dM4

S

4π2F2

(

ln
M2

S

µ2 − 1
2

)

+
3cdcmM4

S

π2F2 ln
M2

S

µ2 − 9G2
VM4

V

8π2F2

(

ln
M2

V

µ2 − 1
2

)

.
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the couplings in (2.5) are the renormalized ones.
One can then consider a different renormalization scheme for κ = cm, dm, MS, MP (denoted

with hat in the new scheme). The difference between the two schemes would be provided by the
shiftsκ = κ̂ +∆κ , with ∆κ a finite constant formally subleading. SinceA(µ) andB(µ) are already
NLO in (2.5), their variation is sub-subdominant and can be neglected, leaving

α(p)
2 = 2F2+16d̂2

m−16ĉ2
m +

[

32d̂m∆dm−32ĉm∆cm + A(µ)
]

= 0, (2.6)

α(p)
4 = 16d̂2

mM̂2
P−16ĉ2

mM̂2
S+
[

32M̂2
Pd̂m∆dm+16d̂2

m∆M2
P−32M̂2

Sĉm∆cm−16ĉ2
m∆M2

S+B(µ)
]

= 0.

The terms within the brackets,[· · ·], correspond to the finite renormalized contributions from the
one-loop diagrams in the new scheme. In general, one finds that the expressions in the brackets suf-
fer from large numerical uncertainties, depending on the precise values of the resonance couplings.
However, there is a convenient scheme where the expressionsin the brackets become zero. In that
case, (2.6) shows the same structure of the large–NC WSRs [7], though now in terms of renormal-
ized parameterŝκ . Furthermore, the change of scheme does not change the low-energy prediction
for the LECs [18]. It just removes the former uncertainty in the NLO high-energy constraints (2.5).
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