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1. Introduction

One of the most difficult problems in QCD is to understand the interface battheepertur-
bative and non-perturbative regimes. Both sophisticated theoretical[igdt$ as well as more
phenomenologically oriented approaches [3] indicate that this connectimr &brupt, but rather
smooth.

Without any doubt, a continuous interpolation between the perturbativihambn-perturbative
region is intimately related to the behavior of the QCD fundamental couplingHéjvever, we
know by now, that the smoothness in this transition can not be achieved withilgive assump-
tion of a coupling with singular growth (Landau pole) in the infrared. Inled accumulated evi-
dence points toward the need of a freezing of the QCD effective cladgyaall momenta [1, 2, 3],
wherea (%) develops an infrared fixed point and QCD has a conformal window aetwugy [5].

The infrared finiteness of the effective charge can be consideredeasf the manifestation
of the phenomenon of dynamical gluon mass generation [1, 6] revealingsimdy, its profound
connection with the most fundamental Green’s functions of QCD, sucheagltion and ghost
propagators [4]. Indeed, the basic ingredients that enter in its definitia contain the right
information and be combined in a very precise way in order to endow thetigéfecharge with the
required physical and field-theoretic properties [2].

In this talk, we will show how different QCD Green'’s functions can be cmad in order to
form renormalization group (RG) invariant quantities which eventually magsiseciated to a def-
inition of an effective charge [4]. Specifically, we will consider firstly eféective charge obtained
within the pinch technique (PT) framework [1, 7], and its corresponeléBlavith the background-
field method (BFM) [9]. The PT effective charge constitutes the most wires-abelian gener-
alization of the familiar concept of the QED effective charge. The sedefidition involves the
ghost and gluon self-energies [10], in the Landau gauge, and in teenkiinc configuration where
the well-known Taylor non-renormalization theorem [11] becomes apjdicab

2. Definitions and ingredients

Let us introduce some of the basic ingredients necessary for the defirfitioa two effective
charges we want to study. In the Landau gauge, the full gluon pregratya, (q) is transverse, and
omiting the color indices, its general form is given by

. . auq
Buv(@) = ~1Puy (@A), with Ry (6) = guv — =5~
where the scalar functioA(g?) is related to the all order self-enerdy,,(q) = Py (q)(q?)
throughA—(g?) = ¢? +iM(g?). The full ghost propagatdd(g?) and its dressing functioR (g?)
are related by

(2.1)

P 2
D(e?) = o

In our construction, a special role is played by the auxiliary two-pointtion A,y (q), repre-
sented in Fig. 1 and defined as [12]

Auv(@) = G G(eF) + YL(GR) = —igCa [ HEDIc+ QA (0 Hov(ka).  (2:3)

(2.2)
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whereCy is the Casimir eigenvalue of the adjoint representati@a [= N for SU(N)], and
Ji = u%(2m)~9 [d9k, with d = 4 — ¢ the dimension of space-time. The vertdy, (k,q) is also
represented in Fig. 1, and its tree-level counterpart is ghvﬁf\: iguv- An additional constraint
on the behavioH,,, (k,q) is imposed by the WI (Ward identity)

qVHHV(k7 q) = _irIJ(k7 q)a (24)

whererl;,(k, q) is the all-order ghost vertex, withrepresenting the momentum of the gluon and
the one of the anti-ghost; at tree-le‘&'é?)(k, q) = —0y-

k,,(r\
Hm/(k7Q:) - Hgg) + L%/stz’

EANGY

k+q

Figure 1: Diagrammatic representation df

2.1 The pinch technique effective charge

The heart of the PT effective charge definition lies on the constructiamefveffective gluon
propagatot E(qz), which captures the running of the Q@bPfunction, exactly as happens with
the vacuum polarization in the case of QED [2, 7, 8]. Already at one-lewg, the PT gluon
propagator displays the desired coefficient in front of the pertubadiyarithm, namely

AYeP) = P [1+ b’ In <f':;>] , (2.5)

whereb = 1ch/487T2 is the first coefficient of the QCIB-function when the number of fermions
n¢s = 0 (quarkless QCD).

In addition, to all ordeﬁ*l(qz) is universal (i.e. process-independent), and therefore it does
not depend on the details of the process where it is embedded as shoignin F

(b)

Figure 2: The universal PT coupling.

One important point, explained in detail in the literature, is the (all-order)espondence
between the PT and the Feynman gauge of the BFM [8, 9]. In fact, ongeragralize the PT
construction [8] in such a way as to reach diagrammatically any value of tlygedixing parameter
of the BFM, and in particular the Landau gauge. In what follows we will implicigsume the
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aforementioned generalization of the PT, given that the main identity we wilious#ate the two
effective charges is valid only in the Landau gauge.

Due to the Abelian WIs satisfied by the PT- BFM Green'’s functions, thernealization con-
stants of the gauge-coupling and of the PT gluon self-energy, defined a

o(p®) =Z5 (1)go; (AP u?) = Z5 (1P)Do(P), (2.6)
where the “0” subscript indicates bare quantities, satisfy the QED-likdorla
Zy=2,"2. 2.7)

Thus, it follows immediately that the product

do(c?) = g3Bo(a?) = G*(W?)A(S?, 1?) = d(P), (2.8)
retains the same form before and after renormalization, i.e., it forms a R@anv u-independent)
quantity [1, 2, 8]. For asymptotically large momenta one may extract ttcgf) a dimensionless
guantity by writing,

N 22
diet) = T8 (2.9)
whereg?(q?) is the RG-invariant effective charge of QCD; at one-loop (use E§) {@to (2.8))

_ g ___ 1
1+b@In (/12 pin <q2//\6cD) ;

g*(”) (2.10)
where/Aqcp denotes an RG-invariant mass scale of a few hundred MeV.

Being a direct consequence of the Wis satisfied by the PT Green8danEqg. (2.8) may be
employed either perturbatively or non-perturbatively, provided thathlas information on the IR
behavior of the PT-BFM gluon propaga@(qz).

However, thanks to a general relation connecting the PT—BAI{N"F) and theconventional
gluon propagatof(g?), all the non-perturbative information we have gathered a¢gt) may
also be used. Specifically, the aforementioned formal all-order relatitessteat [13]

AP = [1+G(D))A(eP), (2.11)

whereG(g?) is the form factor of they,, component appearing on the definition/df' given in
Eq.(2.3). Note that, due to its BRST origin, the above relation must be peskafter renormaliza-
tion. Specifically, denoting b¥, the renormalization constant relating the bare and renormalized
functions,Aj" andAH, through

"’ + AR (g, %) = Za(1?)[g" + A" (9)], (2.12)
then from (2.7) and (2.11) follows the additional relation
Zgt =7,z (2.13)

which it will be useful in the following subsection.
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At lowest order, it is straightforward to verify, that the role of the funetibe 1+ G(g?),
obtained from Eq. (2.3), is to restore tBdunction coefficient in front of UV logarithm. Explicitly,
we have at one-loop (in the Landau gauge) [12]

9CAg?. [ &P ) 13Cag?, [
1+ G(q?) :1+Zﬁgﬁln <22> AYR) = ¢ [1+24ggz In (Szﬂ (2.14)

Using Eq. (2.11) we therefore recover tﬁel(qz) of Eq. (2.5), as we should.
Then, non-perturbatively, one substitutes into Eq. (2.11) th&(g?) andA(g?) obtained from
either the lattice or SD analysis, to obtai(g?). As explained above, the combination formed by

9°A(?)
[1+G(e?))?

is independent of the renormalization pojnt.e. a RG-invariant quantity.

~

d(c?) = (2.15)

2.2 Gluon-ghost vertex

Another possibility for defining the QCD effective charge can be obtasteding from the
various QCD vertices. The basic idea behind is to recognize the RG-invguantities we may
form out of these vertices. The downside of this construction lies in thieéHactit involves all the
momentum scales present in the vertex in question, and further assumtoortgteeir kinematic
configuration need to be introduced, in order to express the chardamdian of a single variable.
The ghost-gluon vertex has been particularly popular in this contextciadgen conjunction with
Taylor’'s non-renormalization theorem and the corresponding kinematgs [

T k Taylor lq
kinematics
ktaqa A4 0+ 4.4
Zl=2,2;,"72;" 7 =7,z

Figure 3: The ghost-gluon vertex and the Taylor kinematics.
For the case of the ghost-gluon vertex (see Fig. 3), the renormalizati@tarts involved are

AP, 1P) = Zy M (1P) Do(0P), F (0, 1?) = Z H(1?)Fo(P),
MY (k,q,u2) = Zi(u?)Fy (k,q), 0o =Zy(U?)g. (2.16)

Notice that a prioriZy defined aZy = leA_l/ZZgl, does not have to coincide with tizg
appearing in (2.6); however, as we will see in the next section, they idaide by virtue of the
basic identity we will derive there.

Choosing the special Taylor's kinematic configuration, where the incontiogtdhas a van-
ishing momentum (i.ek, — —qy), one may impose the following additional condition one the
renormalization constart; (valid only in the Landau gauge), namély = Z@,/Zi/zzC =1, from
which follows immediately that

23t =2%Z.. (2.17)
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Thus, the product

7(?) = 9P 1P)F (7 1) = o 6ho( )5 (), (2.18)
forms a dimensionfuli-independent combination. Therefore, for asymptotically lafgén anal-
ogy to Eq. (2.9), one can define an alternative QCD running coupling as

_ Tgn()
F(of) = 27 (2.19)
q
Using then Eq. (2.14), and the fact that
B 9C 92 q2
1742\ _ A 4
F(q )_1+4 2811 In<u2>, (2.20)

it is straightforward to verify thaigg, (o%) andg?(q?) display the same one-loop behavior, since,
perturbatively the function 4 G(¢?) is the inverse of the ghost dressing functiofm?). As we will
see in the next section, this is nothing more than the one-loop manifestation btieegeneral
identity relatingG(g?) andF (¢?).

3. A special relation between Green'’s functions

In this section, we sketch the main steps needed to derive the central idealidypnly in
the Landau gauge, relating the ghost dressing function with a particutaioation of the form-
factorsG(q?) andL(g?) appearing in the tensorial decompositiom\of, given in Eq. (2.3).

2 ()
q q q k+q
Figure 4: The SDE for the ghost.
First, consider the standard SD equation for the ghost propagator)(Fig 4
D (6) = ¢ +igCa [ M8 (I (k @D (k-+0). 3.1)
Then, contract both sides of the defining equation (2.3) by the combingitapghto get
(G(¢?) + L(q?)]o? = 6°Ca | o (k)6 Hov (k. 0)D(k+ Q) (32

Using Eg. (2.4) and the transversality of the full gluon propagator, weses that the rhs of
Eq. (3.2) is precisely the integral appearing in the ghost SDE (3.1) eldrer

[G(0?) + L(g?)]q? = iD(¢?) — &2, (3.3)

or, in terms of the ghost dressing functiBiig?) [viz. Eq. (2.2)]

1+G(6?) +L(o?) =F () (3.4)
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The above relation, derived here from the SD equations of the themsyhden first obtained
in [14], in the framework of the Batalin-Vilkovisky quantization formalism. Asswgnown there,
the relation is a direct consequence of the fundamental BRST symmetry.

Now, let us construct the dynamical equations governing the behavtbedtinctionsG(g?)
andL(g?). The tensorial projection of both functions in terms/gf, may be obtained from
Eq. (2.3), where id dimensions, we have

2 1 2 2 1 2
G(g°) = m (q /\ﬁ _quqv/\w) ) L(a°) = m (dquqv/\uv —q /\ﬁ) , (3.5
which then gives, in terms of the SDE integrals
2 92CA po . 1 0 o
G(e) = 45 | [ 4770 Hop(k @)Dk +) +iz; [ @PBoo(K T (0Dl +0)

2
—3 fi {isz/kqpﬂpo(k) M (k,q)D(k+ Q)+/kAP"(k) Hop (K, q)D(k+q)} . (3.6)

In this point some words about the renormalization and approximations we mjilog in
Eq. (3.6) are in order. Let us start with the renormalization procedure méntioned before,
since the origin of (3.4) is the BRST symmetry, it should not be deformed r&ftermalization.
Combining the definitions of (2.12) and (2.16), we see that in order to weetige relation (3.4)
we must impose that, = Z. In addition, by virtue of (2.4), and for the same reason, we have that,
in the Landau gaugd;, (k,q) andHgy (k,q) must be renormalized by the same renormalization
constant, namely; [viz. Eq. (2.16)]; for the Taylor kinematics, we have tHat= 1.

Then, approximating the two verticeld,,, (k,q) = igyy, andl ,(k,q) = —q, by their tree-
level values, then, settinfyk, q) = (k- g)?/k?g?, one may show that [4]

FA(Q) = Zo+¢°Ca [ [1- F(k @)AKID(k+0).

9
1+G(q?) =

1 L(d=2)+ Tk )JA(k)D(k+q),

L) - gfg [1-df(k qIaMD(+a). @)

which clearly satisfies Eqg. (3.4).

We next go to the Euclidean space, by settingf = g2, and definingAg(g2) = —A(—g2),
De(g2) = —D(—q2), and for the integration measufg= i [ Then, suppressing the subscript
“E” and settingg? = x, k? =y, we have thak-q = ,/Xycosf, and so(k-g)?/g? = ycos 0, and
(k+q)? =x+y+ 2,/Xycost, we arrive at (see details in [4])

14G(x) = 7,— L -Fix)/o);jyy(?ﬂ— ;:(>A(y)+/xwdy<3+;;> A(y)F(y)},

16m |
L = 922 F(X)/Xoly fA(y)+X/mdyA(y)F(y)],

P00 = - A [P0 Fayy(s Yo+ [ay(s-X)awrw|. @9
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Then, it is easy to see (g, by means of the change of variabies zX) that if A andF are IR
finite, Eq. (3.8) yields the important reswf0) = O [4]. Let us now assume that the renormaliza-
tion condition forF (x) was chosen to bE (u?) = 1. This condition, when inserted into the third
equation of (3.8), allows one to expregsas

. aCa i p? _l 00 _IJ72
Ze=1+ 167 [uz/o dyy<3 “2>A(y)+ uzdy(S y )A(y)F(y)], (3.9)

and may be used to cast (3.8) into a manifestly renormalized form. Note that iClooses
F(u?) = 1, then one cannot choose simultaneous(y?) = 0, because that would violate the
identity of Eq. (3.4), given thdt(u?) # 0. In fact, onceF (u?) = 1 has been imposed, the value of
G(u?) is completely determined from its own equation, i.e. the first equation in (3.8).

In addition, in the MOM schem&(q?) andA(g?) cannot be made equal at the renormalization
point, since Eq. (2.11) implie& (u2) = p2 [1+G2(u2)]2.

Now, let us to return to the couplings, and discuss the implications of the ideitép by
Eq. (3.4). First of all, comparing Eq. (2.13) and Eq. (2.17), itis cleargha) = g'(u), by virtue
of Zy = Z;. Therefore, using Eq. (2.11), and the definitions given in Egs. (2&)2.18), one can
obtain a relation between the two RG-invariant quantifiég?) andd(g?), namely

o~

F(of) = [14G(e?)]F*(q?)d(qP). (3.10)
From this last equality, follows that-+(g?) andagn(g?) are related by
agh(e) = [1+ G(aP)]*F2(0) e (), (3.11)

After using Eq. (3.4), we have that

2 2 L) 1°
der(q°) = Agn(d) [1‘1' 1—|—G(q2)} : (3.12)
Evidently, the two couplings can only coincide at two points: (iat= 0, where, due to the
fact thatL(0) = 0 , we have thatign(0) = aer(0), and (i) atg? = «, given that in the deep UV
L(g?) approaches a constant. Note in fact that the two effective chasyesotcoincide at the
renormalization poins, where agn(p?) = [1—L(1?)]?0pr(1?); this can be understood also in
terms of the discussion following Eg. (3.9).

4. Schwinger-Dyson input and numerical analysis

Now we are in the position to compute the QCD effective charges defineg absing as
input the non-perturbative solutions of SDE for the various Greemistions appearing in their
definitions. More specifically, we will solve numerically a system of threeptei non-linear
integral equations in the Landau gauge, contaidifaf), F (¢°), andG(g?) as unknown quantities.

Once solutions for these three functions have been obtained, tgénis fully determined by
its corresponding equation, namely the second one in Eq. (3.8).
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(a1) ~O- (as)

(a3)

Figure 5: The new SDE for the gluon one-loop dressed diagrams.

The two SD equations determinirig(q?), G(g?) are given in Eq. (3.8). The SD equation
governingA(g?), is given by [12]

4
[1+ G(0?)]A™ () Puv (0) = 6Py (a) +1 _;(ai)uw (4.1)

where the diagramé&s;),v are shown in Fig. 5. As explained in [12], due to the abelian WI sat-
isfied by the fully-dressed vertices in the PT-BFM scheme, we havegthédy) v + (a2) ] =
a“[(az)uv + (aa)uv] = 0. This last property enforces the the transversality of the gluon setfygn
“order-by-order” in the dressed-loop expansion, which is one otémgral features of the gauge-
invariant SD truncation scheme defined within the PT-BFM framework.

After introducing appropriate Ansétze for the aforementioned fullystrésertices, we finally
arrive at the integral equation

2
[1+G()PPA () = qZ_Lé:A VA< f1+/A 2/k2 k+q) }
2
+g%a[gﬁ[%—‘h;)]Dwnxk+qy—;ﬁowﬂ, (4.2)
with
2 2 2, (0?2 »[20 10 5 2(k+q)?
i = 20 AaC-elerg +(k+Q)2_(k' ) [l<2+0|2+k2(k+q)2+ q2k? ]

o 2l g K g @ L, Kk, k9 (4.3)

2 (k+@? (k+g?  K(k+a)? gi(k+0)?]

The important point is that, by virtue of the poles introduced into the equationghrthe particular
Ansatze employed [1, 12, 15], one obtains an IR finite solution for the giwopagator, i.e.a
solution withA=1(0) > 0, in complete agreement with a large body of lattice data [16].

In Figs. 6 we show the results fdx(g?) and F(g°) renormalized at three different points,

= {4.3,10,22} GeV with a(p?) = {0.21,0.16,0.13} respectively. On the right panel we plot
the corresponding (g2) renormalized at the same points. Notice that the solutions obtained are in
gualitative agreement with recent results from large-volume lattices [1&tterie both quantities,
A(g?) andF(g?), reach finite (non-vanishing) values in the deep IR.

The results for 2- G(g?) andL(g?), renormalized at the same points, are presented in Fig. 7.
As we can see, the functiontlG(g?) is also IR finite exhibiting a plateau for valuesgsf< 0.1Ge\~.
In the UV region, we instead recover the perturbative behavior (2 @#)the other hand,(g?)
shows a maximum in the intermediate momentum region, while, as expe¢®ds 0.



Non-perturbative Green’s functions and the QCD effectharge Arlene C. Aguilar

T T T T T T 1'5 T T T T T T
Gluon Propagator | Ghost dressing 4
—a—a()’) = 0.21 and p = 4.3 GeV ——q(y’) =0.21 and = 4.3 GeV

—e—a(1)=0.16 and = 10 GeV —e—a(y’)=0.16and p = 10 GeV
a(y’) =0.13 and u =22 GeV a(p’)=0.13and u =22 GeV |1

AG?)GeV Y
F(q%)

T T T T T 0.8 T T T T T T
1E-4 1E-3 0,01 0,1 1 10 100 1000 1E-4 1E-3 0,01 0,1 1 10 100 1000

q7[GeV’] q7[GeV’]

Figure 6: Left panel Numerical solutions for the gluon propagator obtainednfithe SDE renormalized
at three different pointsy = {4.3,10,22} GeV with a(u?) = {0.21,0.16,0.13}. Right panel The ghost
dressing functiorF (g?) obtained from its corresponding SDE and renormalized asnee points.

1’1 T T T T T
1+G(q)

—a—g(’) = 0.21 and p = 4.3 GeV
—e—a(y’)=0.16 and p = 10 GeV
a(u’)=0.13and u = 22 GeV

0,030 4 B

0,025+ B

0,020 4 -

G <
O 09 4 =
i - 0,015+ _
0,010+ 4
0,8+ 4
L(q)
0,005 —"'—u(pz) =021andp=4.3GeV | |
—e—a(1?)=0.16 and u =10 GeV
a(p’)=0.13 and u =22 GeV
07 . T T T : 0,000 =P T T T
1E-3 0,01 0,1 1 10 100 1000 1E4  1E3 0,01 0,1 1 10 100 1000 10000
qIGeV] q1GeV’]

Figure 7: Left panel 1+ G(g?) determined from Eq. (3.8), using the solutions &4g?) andD(g?) pre-
sented in the Fig. 6 at the same renormalization poiRtight panel The functionL(g?) obtained from
Eqg. (3.8).

With all ingredients defined, the first thing one can check is that indee(PBdp) gives rise to
a RG-invariant combination. Using the latter definition, we can combine theatiffelata sets for
A(g?) and[1+ G(g?))? at different renormalization points, to arrive at the curves shown olethe
panel of Fig. 8. Indeed, we see that all curves, for different wahfe:, merge one into the other
proving that the combinatioa(qz) is independent of the renormalization point chosen.

From the dimensiondeT(qz) we must now extract a dimensionless factdtg?), correspond-
ing to the running coupling (effective charge). Given thé&y?) is IR finite, the physically mean-

ingful procedure is to factor out from(q?) a massive propagatéu? -+ m?(c?)] 2,

oo GH@)

10
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32 T T T T T T il T T T T T U
4 RGI product d(qz)=gzﬁ(qz) 0,6
«(1)=0.21 and u=4.3 GeV | |
- - - o(1)=0.16 and =10 GeV
a(y’)=0.13 and =22 GeV | |

28+

24

0,54

20
04

d(q*)[GeV ]

4 0,34

0,24

T T T T T T 0.1 T T T T T T
1E-4 1E-3 0,01 0,1 1 10 100 1000 1E-3 0,01 0,1 1 10 100 1000

q7[GeV’] q’[GeV]

Figure 8: Left panel The d(g?) obtained by combining\(g?) and [1 + G(q?)]? according to Eq. (2.15).
Right panel agn(q?) vs apr(g?), for mp = 500 MeV.

where for the mass we will assume “power-law” running [¥#(q?) = mg/(q? 4+ mj).
Thus, it follows from Eq. (4.4), that the effective chamge(g?) = g2(g?) /4 is identified as
being

40er(?) = [0 + ()] d(6P) - (4.5)

Finally we compare numerically the two effective charges(q?) and agh(qz) on the right
panel of Fig. 8. First, we determing.(g?) obtained using (4.5), then we obtaixgh(qz) with
help of (3.12) and the results fordG(g?) andL(g?) shown in Fig. 7. As we can clearly see, both
couplings freeze at the same finite value, exhibiting a plateau for valugsod.02 Ge\?, while in
the UV both show the expected perturbative behavior. They differ digigtly in the intermediate
region where the values &fg?) are appreciable.

5. Conclusions

In this talk we have compared the definition of two QCD effective chargegg?) and
agh(g?), obtained within two vastly different frameworks: the PT-BFM on the onedhand the
ghost-gluon vertex (with the Taylor-kinematics) on the other.

Despite their distinct field-theoretic origin, their dynamics involves the gluopaato\(g?)
as a common ingredient and two different ingredients, which participate andrivial identity.
This identity, which is valid only in the Landau gauge, relates the ghostidgesction,F (¢?),
with the two form-factorsG(g?) andL(g?).

As consequence of the aforementioned identity, we have shown that thedfegtive charges
are almost identical in the entire range of physical momenta. More specifitaly coincide ex-
actly in the deep infrared, where they freeze at a common finite value Jisigitize appearance of
IR fixed point and a conformal window in QCD [5], in agreement with a \wgroé phenomenolog-
ical studies [18].

11
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