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Using as ingredients the non-perturbative solutions of various QCD Green’s function obtained

from Schwinger-Dyson equations (SDEs), we study two versions of the QCD effective charge.

The first one obtained from the pinch technique gluon self-energy, and the second from the ghost-

gluon vertex. Despite the distinct nature of their buildings blocks, the two effectives charges are
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dressing function with the two form factors of Green’s function, which is of central importance

in the PT-BFM formalism. In this talk, we outline how to derive this crucial identity from the

SDEs of the aforementioned Green’s functions. The renormalization procedure that preserves the

validity of this identity is discussed in detail. Most importantly, we show that due to the infrared

finiteness of the gluon propagator, the QCD charge obtained with either definition freezes in the

deep infrared, in agreement with theoretical and phenomenological expectations.
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1. Introduction

One of the most difficult problems in QCD is to understand the interface between the pertur-
bative and non-perturbative regimes. Both sophisticated theoretical tools[1, 2] as well as more
phenomenologically oriented approaches [3] indicate that this connection isnot abrupt, but rather
smooth.

Without any doubt, a continuous interpolation between the perturbative andthe non-perturbative
region is intimately related to the behavior of the QCD fundamental coupling [4].However, we
know by now, that the smoothness in this transition can not be achieved with perturbative assump-
tion of a coupling with singular growth (Landau pole) in the infrared. Indeed, all accumulated evi-
dence points toward the need of a freezing of the QCD effective chargeat small momenta [1, 2, 3],
whereα(q2) develops an infrared fixed point and QCD has a conformal window at lowenergy [5].

The infrared finiteness of the effective charge can be considered asone of the manifestation
of the phenomenon of dynamical gluon mass generation [1, 6] revealing in this way, its profound
connection with the most fundamental Green’s functions of QCD, such as the gluon and ghost
propagators [4]. Indeed, the basic ingredients that enter in its definition must contain the right
information and be combined in a very precise way in order to endow the effective charge with the
required physical and field-theoretic properties [2].

In this talk, we will show how different QCD Green’s functions can be combined in order to
form renormalization group (RG) invariant quantities which eventually may beassociated to a def-
inition of an effective charge [4]. Specifically, we will consider firstly theeffective charge obtained
within the pinch technique (PT) framework [1, 7], and its correspondence [8] with the background-
field method (BFM) [9]. The PT effective charge constitutes the most direct non-abelian gener-
alization of the familiar concept of the QED effective charge. The seconddefinition involves the
ghost and gluon self-energies [10], in the Landau gauge, and in the kinematic configuration where
the well-known Taylor non-renormalization theorem [11] becomes applicable.

2. Definitions and ingredients

Let us introduce some of the basic ingredients necessary for the definitionof the two effective
charges we want to study. In the Landau gauge, the full gluon propagator ∆µν(q) is transverse, and
omiting the color indices, its general form is given by

∆µν(q) = −iPµν(q)∆(q2), with Pµν(q) = gµν −
qµqν

q2 , (2.1)

where the scalar function∆(q2) is related to the all order self-energyΠµν(q) = Pµν(q)Π(q2)

through∆−1(q2) = q2 + iΠ(q2). The full ghost propagatorD(q2) and its dressing functionF(q2)

are related by

D(q2) =
iF (q2)

q2 . (2.2)

In our construction, a special role is played by the auxiliary two-point functionΛµν(q), repre-
sented in Fig. 1 and defined as [12]

Λµν(q) = gµνG(q2)+
qµqν

q2 L(q2) = −ig2CA

∫

k
H(0)

µρ D(k+q)∆ρσ (k)Hσν(k,q), (2.3)
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whereCA is the Casimir eigenvalue of the adjoint representation [CA = N for SU(N) ], and∫
k ≡ µ2ε(2π)−d ∫

ddk, with d = 4− ε the dimension of space-time. The vertexHµν(k,q) is also

represented in Fig. 1, and its tree-level counterpart is givenH(0)
µν = igµν . An additional constraint

on the behaviorHµν(k,q) is imposed by the WI (Ward identity)

qνHµν(k,q) = −iΓΓΓµ(k,q) , (2.4)

whereΓΓΓµ(k,q) is the all-order ghost vertex, withk representing the momentum of the gluon andq

the one of the anti-ghost; at tree-levelΓΓΓ(0)
µ (k,q) = −qµ .

Hσν(k, q) = H(0)
σν +

k, σ

k + q

q

ν

Figure 1: Diagrammatic representation ofH.

2.1 The pinch technique effective charge

The heart of the PT effective charge definition lies on the construction ofa neweffective gluon
propagator, ∆̂(q2), which captures the running of the QCDβ function, exactly as happens with
the vacuum polarization in the case of QED [2, 7, 8]. Already at one-looplevel, the PT gluon
propagator displays the desired coefficient in front of the perturbative logarithm, namely

∆̂−1(q2) = q2
[
1+bg2 ln

(
q2

µ2

)]
, (2.5)

whereb = 11CA/48π2 is the first coefficient of the QCDβ -function when the number of fermions
nf = 0 (quarkless QCD).

In addition, to all order̂∆−1(q2) is universal (i.e. process-independent), and therefore it does
not depend on the details of the process where it is embedded as shown in Fig. 2.

∆̂ ∆̂ ∆̂

(a) (b) (c)

g gg
g2g2

g

Figure 2: The universal PT coupling.

One important point, explained in detail in the literature, is the (all-order) correspondence
between the PT and the Feynman gauge of the BFM [8, 9]. In fact, one cangeneralize the PT
construction [8] in such a way as to reach diagrammatically any value of the gauge fixing parameter
of the BFM, and in particular the Landau gauge. In what follows we will implicitlyassume the
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aforementioned generalization of the PT, given that the main identity we will useto relate the two
effective charges is valid only in the Landau gauge.

Due to the Abelian WIs satisfied by the PT- BFM Green’s functions, the renormalization con-
stants of the gauge-coupling and of the PT gluon self-energy, defined as

g(µ2) = Z−1
g (µ2)g0 ; ∆̂(q2,µ2) = Ẑ−1

A (µ2)∆̂0(q
2), (2.6)

where the “0” subscript indicates bare quantities, satisfy the QED-like relation

Zg = Ẑ−1/2
A . (2.7)

Thus, it follows immediately that the product

d̂0(q
2) = g2

0∆̂0(q
2) = g2(µ2)∆̂(q2,µ2) = d̂(q2), (2.8)

retains the same form before and after renormalization, i.e., it forms a RG-invariant (µ-independent)
quantity [1, 2, 8]. For asymptotically large momenta one may extract fromd̂(q2) a dimensionless
quantity by writing,

d̂(q2) =
g2(q2)

q2 , (2.9)

whereg2(q2) is the RG-invariant effective charge of QCD; at one-loop (use Eq. (2.5) into (2.8))

g2(q2) =
g2

1+bg2 ln(q2/µ2)
=

1

bln
(

q2/Λ2
QCD

) , (2.10)

whereΛQCD denotes an RG-invariant mass scale of a few hundred MeV.
Being a direct consequence of the WIs satisfied by the PT Green’s function, Eq. (2.8) may be

employed either perturbatively or non-perturbatively, provided that one has information on the IR
behavior of the PT-BFM gluon propagator∆̂(q2).

However, thanks to a general relation connecting the PT-BFM∆̂(q2) and theconventional
gluon propagator∆(q2), all the non-perturbative information we have gathered about∆(q2) may
also be used. Specifically, the aforementioned formal all-order relation states that [13]

∆(q2) =
[
1+G(q2)

]2 ∆̂(q2), (2.11)

whereG(q2) is the form factor of thegµν component appearing on the definition ofΛµν given in
Eq.(2.3). Note that, due to its BRST origin, the above relation must be preserved after renormaliza-
tion. Specifically, denoting byZΛ the renormalization constant relating the bare and renormalized
functions,Λµν

0 andΛµν , through

gµν +Λµν(q,µ2) = ZΛ(µ2)[gµν +Λµν
0 (q)], (2.12)

then from (2.7) and (2.11) follows the additional relation

Z−1
g = Z1/2

A ZΛ, (2.13)

which it will be useful in the following subsection.
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At lowest order, it is straightforward to verify, that the role of the function the 1+ G(q2),
obtained from Eq. (2.3), is to restore theβ function coefficient in front of UV logarithm. Explicitly,
we have at one-loop (in the Landau gauge) [12]

1+G(q2) = 1+
9
4

CAg2

48π2 ln

(
q2

µ2

)
∆−1(q2) = q2

[
1+

13
2

CAg2

48π2 ln

(
q2

µ2

)]
. (2.14)

Using Eq. (2.11) we therefore recover the∆̂−1(q2) of Eq. (2.5), as we should.
Then, non-perturbatively, one substitutes into Eq. (2.11) the 1+G(q2) and∆(q2) obtained from

either the lattice or SD analysis, to obtain∆̂(q2). As explained above, the combination formed by

d̂(q2) =
g2∆(q2)

[1+G(q2)]2
, (2.15)

is independent of the renormalization pointµ i.e. a RG-invariant quantity.

2.2 Gluon-ghost vertex

Another possibility for defining the QCD effective charge can be obtainedstarting from the
various QCD vertices. The basic idea behind is to recognize the RG-invariant quantities we may
form out of these vertices. The downside of this construction lies in the fact that it involves all the
momentum scales present in the vertex in question, and further assumptions about their kinematic
configuration need to be introduced, in order to express the charge as afunction of a single variable.
The ghost-gluon vertex has been particularly popular in this context, especially in conjunction with
Taylor’s non-renormalization theorem and the corresponding kinematics [10].

k

k + q q

Z ′
g = Z1Z

−1/2
A Z−1

c

q

q

0

Taylor

kinematics

Z ′
g = Z

−1/2
A Z−1

c

Figure 3: The ghost-gluon vertex and the Taylor kinematics.

For the case of the ghost-gluon vertex (see Fig. 3), the renormalization constants involved are

∆(q2,µ2) = Z−1
A (µ2)∆0(q

2), F(q2,µ2) = Z−1
c (µ2)F0(q

2),

ΓΓΓν(k,q,µ2) = Z1(µ2)ΓΓΓν
0(k,q), g0 = Zg′(µ2)g′. (2.16)

Notice that a prioriZg′ defined asZg′ = Z1Z−1/2
A Z−1

c , does not have to coincide with theZg

appearing in (2.6); however, as we will see in the next section, they do coincide by virtue of the
basic identity we will derive there.

Choosing the special Taylor’s kinematic configuration, where the incoming ghost has a van-
ishing momentum (i.e.kµ → −qµ ), one may impose the following additional condition one the

renormalization constantZ1 (valid only in the Landau gauge), namelyZ1 = Zg′Z
1/2
A Zc = 1, from

which follows immediately that
Z−1

g′ = Z1/2
A Zc. (2.17)
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Thus, the product
r̂(q2) = g′2∆(q2; µ2)F2(q2; µ2) = g′20∆0(q

2)F2
0 (q2), (2.18)

forms a dimensionfulµ-independent combination. Therefore, for asymptotically largeq2, in anal-
ogy to Eq. (2.9), one can define an alternative QCD running coupling as

r̂(q2) =
g2

gh(q
2)

q2 . (2.19)

Using then Eq. (2.14), and the fact that

F−1(q2) = 1+
9
4

CAg2

48π
ln

(
q2

µ2

)
, (2.20)

it is straightforward to verify thatg2
gh(q

2) andg2(q2) display the same one-loop behavior, since,
perturbatively the function 1+G(q2) is the inverse of the ghost dressing functionF(q2). As we will
see in the next section, this is nothing more than the one-loop manifestation of themore general
identity relatingG(q2) andF(q2).

3. A special relation between Green’s functions

In this section, we sketch the main steps needed to derive the central identity,valid only in
the Landau gauge, relating the ghost dressing function with a particular combination of the form-
factorsG(q2) andL(q2) appearing in the tensorial decomposition ofΛµν given in Eq. (2.3).

( )−1 = ( )−1 +

k

q q q k + q

Figure 4: The SDE for the ghost.

First, consider the standard SD equation for the ghost propagator (Fig 4),

iD−1(q2) = q2 + ig2CA

∫

k
Γµ∆µν(k)ΓΓΓν(k,q)D(k+q). (3.1)

Then, contract both sides of the defining equation (2.3) by the combinationqµqν to get

[G(q2)+L(q2)]q2 = g2CA

∫

k
qρ∆ρσ (k)qνHσν(k,q)D(k+q). (3.2)

Using Eq. (2.4) and the transversality of the full gluon propagator, we can see that the rhs of
Eq. (3.2) is precisely the integral appearing in the ghost SDE (3.1). Therefore

[G(q2)+L(q2)]q2 = iD−1(q2)−q2, (3.3)

or, in terms of the ghost dressing functionF(q2) [viz. Eq. (2.2)]

1+G(q2)+L(q2) = F−1(q2) (3.4)

6
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The above relation, derived here from the SD equations of the theory, has been first obtained
in [14], in the framework of the Batalin-Vilkovisky quantization formalism. As was shown there,
the relation is a direct consequence of the fundamental BRST symmetry.

Now, let us construct the dynamical equations governing the behavior ofthe functionsG(q2)

and L(q2). The tensorial projection of both functions in terms ofΛµν may be obtained from
Eq. (2.3), where ind dimensions, we have

G(q2) =
1

(d−1)q2

(
q2Λµ

µ −qµqνΛµν
)
, L(q2) =

1
(d−1)q2

(
dqµqνΛµν −q2Λµ

µ
)
, (3.5)

which then gives, in terms of the SDE integrals

G(q2) =
g2CA

d−1

[∫

k
∆ρσ (k)Hσρ(k,q)D(k+q)+ i

1
q2

∫

k
qρ∆ρσ (k)ΓΓΓσ (k,q)D(k+q)

]
,

L(q2) = −g2CA

d−1

[
i

d
q2

∫

k
qρ∆ρσ (k)ΓΓΓσ (k,q)D(k+q)+

∫

k
∆ρσ (k)Hσρ(k,q)D(k+q)

]
. (3.6)

In this point some words about the renormalization and approximations we will employ in
Eq. (3.6) are in order. Let us start with the renormalization procedure. As mentioned before,
since the origin of (3.4) is the BRST symmetry, it should not be deformed afterrenormalization.
Combining the definitions of (2.12) and (2.16), we see that in order to preserve the relation (3.4)
we must impose thatZΛ = Zc. In addition, by virtue of (2.4), and for the same reason, we have that,
in the Landau gauge,ΓΓΓν(k,q) andHσν(k,q) must be renormalized by the same renormalization
constant, namelyZ1 [viz. Eq. (2.16)]; for the Taylor kinematics, we have thatZ1 = 1.

Then, approximating the two vertices,Hµν(k,q) = igµν , andΓΓΓµ(k,q) = −qµ , by their tree-
level values, then, settingf (k,q) ≡ (k ·q)2/k2q2, one may show that [4]

F−1(q2) = Zc +g2CA

∫

k
[1− f (k,q)]∆(k)D(k+q),

1+G(q2) = Zc +
g2CA

d−1

∫

k
[(d−2)+ f (k,q)]∆(k)D(k+q),

L(q2) =
g2CA

d−1

∫

k
[1−d f(k,q)]∆(k)D(k+q) , (3.7)

which clearly satisfies Eq. (3.4).

We next go to the Euclidean space, by setting−q2 = q2
E, and defining∆E(q2

E) = −∆(−q2
E),

DE(q2
E) = −D(−q2

E), and for the integration measure
∫

k = i
∫

kE
. Then, suppressing the subscript

“E” and settingq2 = x, k2 = y, we have thatk ·q =
√

xycosθ , and so(k ·q)2/q2 = ycos2 θ , and
(k+q)2 = x+y+2

√
xycosθ , we arrive at (see details in [4])

1+G(x) = Zc−
αsCA

16π

[
F(x)

x

∫ x

0
dy y

(
3+

y
3x

)
∆(y)+

∫ ∞

x
dy

(
3+

x
3y

)
∆(y)F(y)

]
,

L(x) =
αsCA

12π

[
F(x)
x2

∫ x

0
dy y2∆(y)+x

∫ ∞

x
dy

∆(y)F(y)
y

]
,

F−1(x) = Zc−
αsCA

16π

[
F(x)

x

∫ x

0
dy y

(
3− y

x

)
∆(y)+

∫ ∞

x
dy

(
3− x

y

)
∆(y)F(y)

]
. (3.8)

7
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Then, it is easy to see (e.g., by means of the change of variablesy = zx) that if ∆ andF are IR
finite, Eq. (3.8) yields the important resultL(0) = 0 [4]. Let us now assume that the renormaliza-
tion condition forF(x) was chosen to beF(µ2) = 1. This condition, when inserted into the third
equation of (3.8), allows one to expressZc as

Zc = 1+
αsCA

16π

[
1

µ2

∫ µ2

0
dyy

(
3− y

µ2

)
∆(y)+

∫ ∞

µ2
dy

(
3− µ2

y

)
∆(y)F(y)

]
, (3.9)

and may be used to cast (3.8) into a manifestly renormalized form. Note that if one choses
F(µ2) = 1, then one cannot choose simultaneouslyG(µ2) = 0, because that would violate the
identity of Eq. (3.4), given thatL(µ2) 6= 0. In fact, onceF(µ2) = 1 has been imposed, the value of
G(µ2) is completely determined from its own equation, i.e. the first equation in (3.8).

In addition, in the MOM scheme∆(q2) and∆̂(q2) cannot be made equal at the renormalization
point, since Eq. (2.11) implieŝ∆(−1)(µ2) = µ2

[
1+G2(µ2)

]2
.

Now, let us to return to the couplings, and discuss the implications of the identity given by
Eq. (3.4). First of all, comparing Eq. (2.13) and Eq. (2.17), it is clear that g(µ) = g′(µ), by virtue
of ZΛ = Zc. Therefore, using Eq. (2.11), and the definitions given in Eqs. (2.8) and (2.18), one can
obtain a relation between the two RG-invariant quantities,r̂(q2) andd̂(q2), namely

r̂(q2) = [1+G(q2)]2F2(q2)d̂(q2). (3.10)

From this last equality, follows thatαPT(q2) andαgh(q2) are related by

αgh(q
2) = [1+G(q2)]2F2(q2)αPT(q

2), (3.11)

After using Eq. (3.4), we have that

αPT(q
2) = αgh(q

2)

[
1+

L(q2)

1+G(q2)

]2

. (3.12)

Evidently, the two couplings can only coincide at two points: (i) atq2 = 0, where, due to the
fact thatL(0) = 0 , we have thatαgh(0) = αPT(0), and (ii) atq2 = ∞, given that in the deep UV
L(q2) approaches a constant. Note in fact that the two effective chargescannotcoincide at the
renormalization pointµ, whereαgh(µ2) = [1−L(µ2)]2αPT(µ2); this can be understood also in
terms of the discussion following Eq. (3.9).

4. Schwinger-Dyson input and numerical analysis

Now we are in the position to compute the QCD effective charges defined above, using as
input the non-perturbative solutions of SDE for the various Green’s functions appearing in their
definitions. More specifically, we will solve numerically a system of three coupled non-linear
integral equations in the Landau gauge, containing∆(q2), F(q2), andG(q2) as unknown quantities.

Once solutions for these three functions have been obtained, thenL(q2) is fully determined by
its corresponding equation, namely the second one in Eq. (3.8).

8
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(a1) (a2) (a3) (a4)

Figure 5: The new SDE for the gluon one-loop dressed diagrams.

The two SD equations determiningF(q2), G(q2) are given in Eq. (3.8). The SD equation
governing∆(q2), is given by [12]

[1+G(q2)]2∆−1(q2)Pµν(q) = q2Pµν(q)+ i
4

∑
i=1

(ai)µν , (4.1)

where the diagrams(ai)µν are shown in Fig. 5. As explained in [12], due to the abelian WI sat-
isfied by the fully-dressed vertices in the PT-BFM scheme, we have thatqµ [(a1)µν + (a2)µν ] =

qµ [(a3)µν +(a4)µν ] = 0. This last property enforces the the transversality of the gluon self-energy
“order-by-order” in the dressed-loop expansion, which is one of thecentral features of the gauge-
invariant SD truncation scheme defined within the PT-BFM framework.

After introducing appropriate Ansätze for the aforementioned fully-dressed vertices, we finally
arrive at the integral equation

[1+G(q2)]2∆−1(q2) = q2− g2CA

6

[∫

k
∆(k)∆(k+q) f1 +

∫

k
∆(k) f2−

1
2

∫

k

q2

k2(k+q)2

]

+ g2CA

[
4
3

∫

k

[
k2− (k ·q)2

q2

]
D(k)D(k+q)−2

∫

k
D(k)

]
, (4.2)

with

f1 = 20q2 +18k2−6(k+q)2 +
(q2)2

(k+q)2 − (k ·q)2
[

20
k2 +

10
q2 +

q2

k2(k+q)2 +
2(k+q)2

q2k2

]
,

f2 = −27
2
−8

k2

(k+q)2 +8
q2

(k+q)2 +4
(k ·q)2

k2(k+q)2 −4
(k ·q)2

q2(k+q)2 , (4.3)

The important point is that, by virtue of the poles introduced into the equation through the particular
Ansätze employed [1, 12, 15], one obtains an IR finite solution for the gluonpropagator, i.e.a
solution with∆−1(0) > 0, in complete agreement with a large body of lattice data [16].

In Figs. 6 we show the results for∆(q2) and F(q2) renormalized at three different points,
µ = {4.3,10,22} GeV with α(µ2) = {0.21,0.16,0.13} respectively. On the right panel we plot
the correspondingF(q2) renormalized at the same points. Notice that the solutions obtained are in
qualitative agreement with recent results from large-volume lattices [16] where the both quantities,
∆(q2) andF(q2), reach finite (non-vanishing) values in the deep IR.

The results for 1+G(q2) andL(q2), renormalized at the same points, are presented in Fig. 7.
As we can see, the function 1+G(q2) is also IR finite exhibiting a plateau for values ofq2 < 0.1GeV2.
In the UV region, we instead recover the perturbative behavior (2.14).On the other hand,L(q2)

shows a maximum in the intermediate momentum region, while, as expected,L(0) = 0.

9



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
0
1

Non-perturbative Green’s functions and the QCD effective charge Arlene C. Aguilar

1E-4 1E-3 0,01 0,1 1 10 100 1000

0

2

4

6

8

10 Gluon Propagator
 ( 2) = 0.21 and  = 4.3 GeV 
 ( 2) = 0.16 and  = 10  GeV 
 ( 2) = 0.13 and  = 22  GeV 

 

 
(q

2 )[G
eV

 - 
2 ]

q2[GeV2]

1E-4 1E-3 0,01 0,1 1 10 100 1000
0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5
Ghost dressing

 ( 2) = 0.21 and  = 4.3 GeV 
 ( 2) = 0.16 and  = 10  GeV 
 ( 2) = 0.13 and  = 22  GeV 

 

 

F(
q2 )

q2[GeV2]

Figure 6: Left panel: Numerical solutions for the gluon propagator obtained from the SDE renormalized
at three different points,µ = {4.3,10,22}GeV with α(µ2) = {0.21,0.16,0.13}. Right panel: The ghost
dressing functionF(q2) obtained from its corresponding SDE and renormalized at thesame points.
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Figure 7: Left panel: 1+G(q2) determined from Eq. (3.8), using the solutions for∆(q2) andD(q2) pre-
sented in the Fig. 6 at the same renormalization points.Right panel: The functionL(q2) obtained from
Eq. (3.8).

With all ingredients defined, the first thing one can check is that indeed Eq.(2.15) gives rise to
a RG-invariant combination. Using the latter definition, we can combine the different data sets for
∆(q2) and[1+G(q2)]2 at different renormalization points, to arrive at the curves shown on theleft
panel of Fig. 8. Indeed, we see that all curves, for different values of µ, merge one into the other
proving that the combination̂d(q2) is independent of the renormalization point chosen.

From the dimensionful̂d(q2) we must now extract a dimensionless factor,g2(q2), correspond-
ing to the running coupling (effective charge). Given that∆(q2) is IR finite, the physically mean-
ingful procedure is to factor out from̂d(q2) a massive propagator[q2 +m2(q2)]−1,

d̂(q2) =
g2(q2)

q2 +m2(q2)
, (4.4)
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Figure 8: Left panel: The d̂(q2) obtained by combining∆(q2) and [1+ G(q2)]2 according to Eq. (2.15).
Right panel: αgh(q2) vs αPT(q2), for m0 = 500MeV.

where for the mass we will assume “power-law” running [17],m2(q2) = m4
0/(q2 +m2

0).

Thus, it follows from Eq. (4.4), that the effective chargeαPT(q2) = g2(q2)/4π is identified as
being

4παPT(q
2) = [q2 +m2(q2)]d̂(q2) . (4.5)

Finally we compare numerically the two effective charges,αPT(q2) andαgh(q2) on the right
panel of Fig. 8. First, we determineαPT(q2) obtained using (4.5), then we obtainαgh(q2) with
help of (3.12) and the results for 1+G(q2) andL(q2) shown in Fig. 7. As we can clearly see, both
couplings freeze at the same finite value, exhibiting a plateau for values ofq2 < 0.02GeV2, while in
the UV both show the expected perturbative behavior. They differ only slightly in the intermediate
region where the values ofL(q2) are appreciable.

5. Conclusions

In this talk we have compared the definition of two QCD effective charges,αPT(q2) and
αgh(q2), obtained within two vastly different frameworks: the PT-BFM on the one hand, and the
ghost-gluon vertex (with the Taylor-kinematics) on the other.

Despite their distinct field-theoretic origin, their dynamics involves the gluon propagator∆(q2)

as a common ingredient and two different ingredients, which participate in a non-trivial identity.
This identity, which is valid only in the Landau gauge, relates the ghost dressing function,F(q2),
with the two form-factors,G(q2) andL(q2).

As consequence of the aforementioned identity, we have shown that the twoeffective charges
are almost identical in the entire range of physical momenta. More specifically, they coincide ex-
actly in the deep infrared, where they freeze at a common finite value, signaling the appearance of
IR fixed point and a conformal window in QCD [5], in agreement with a variety of phenomenolog-
ical studies [18].
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