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1. Introduction and preliminary estimates

The RHIC data on collective-expansion dynamics of the hot and dense QGP-fireball formed in
ultrarelativistic nucleus-nucleus collisions can be described by the assumption that this dynamics
is governed by the laws of relativistic hydrodynamics. Particles of different mass are emitted from
the fireball with a common fluid velocity, that is a signature of a hydrodynamic-type behavior.
Furthermore, an agreement between the experimental data [1, 2] and the predictions of relativistic
hydrodynamics can be reached if the flow of the QGP-fluid is treated as almost non-viscous [3].
This leads to an indication that, in the vicinity of the deconfinement phase transition, the quark-
gluon plasma (QGP) produced in the RHIC experiments behavesmore like an ideal quantum liquid
rather than a weakly interacting gas. The mean free pathLmfp of a parton, which traverses such a
liquid, is much smaller than the thermal wavelengthβ = 1/T, i.e. (Lliq

mfp/β ) ≪ 1.

One can consider for comparison a weakly interacting dilute-gas model of the QGP. There,
Lgas

mfp ∼ (ρσt)
−1 with ρ andσt standing for the particle-number density and the Coulomb transport

cross section, respectively. Using the standard estimatesρ ∼ T3 andσt ∼ g4β 2 lng−1, whereg =

g(T) is the perturbative finite-temperature QCD coupling, one obtains(Lgas
mfp/β )∼ 1/(g4 lng−1)≫

1, that contradicts the above-mentioned experimental results. One can check [4] that these results
could have only been reproduced by the dilute-gas model if the perturbative transport cross sec-
tion, σt , were larger by an order of magnitude. This inconsistency ofthe weakly interacting QGP
with the RHIC data initiated recent calculations of kineticcoefficients in thestrongly interacting
relativistic plasmas.

Among these coefficients, the one whose values define whetherthe plasma can be considered
as weakly or strongly interacting is the shear viscosityη . It is related to the above(Lmfp/β )-ratio
via the estimate(η/s) ∼ (Lmfp/β ), wheres is the entropy density. According to this relation,
the shear-viscosity to the entropy-density ratio,η/s, becomes smaller when the plasma interacts
stronger. For instance, forT ∼ 200MeV and the estimated typical mean free pathLmfp ∼ 0.1fm,
one has(η/s) ∼ 0.1. On the other hand, since the mean momentum change∆p of a parton, which
propagates through the plasma over the distanceLmfp, is of the order ofT, the Heisenberg un-
certainty principle forbids the ratio(Lmfp/β ) ∼ Lmfp ·∆p (and therefore alsoη/s) to be vanish-
ingly small. Up to now, the minimaltemperature-independentvalue of 1/(4π) ≃ 0.08 for the
shear-viscosity to the entropy-density ratio has been found in N = 4 SYM theory [5]. It is thus
challenging to find other QCD-motivated models where this ratio would be that small.

In this talk, we demonstrate that atemperature-dependentη/s of this order of magnitude is
produced by soft stochastic background fields present in thegluon plasma of SU(3) YM theory.
We obtain this contribution to the shear viscosity by means of the Kubo formula, which relates the
corresponding spectral densityρ(ω) to the Euclidean correlation function of the(1,2)-component
of the energy-momentum tensorT12(x,x4). This method, proposed in Ref. [6], has been explored in
Refs. [7, 8] with the aim to simulate shear viscosity on the lattice. Here we work in the continuum
limit and parametrize the Euclidean correlation function of the energy-momentum tensors by means
of the stochastic vacuum model [9]. This model generalizes QCD sum rules by assuming the exis-
tence of not only the gluon condensate

〈

g2(Fa
µν)2

〉

but also of the finite vacuum correlation length
µ−1. This assumption is justified by the lattice results on the exponential fall-off at large distances
of the two-point correlation function of gluonic field strengths [10, 11],

〈

Fa
µν(0)Fb

λρ(x)
〉

∼ e−µ |x|.
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By virtue of this finding, the model manages to quantitatively describe confinement; for instance,
the string tension readsσ ∝ µ−2

〈

g2(Fa
µν)2

〉

.
Below we will use a finite-temperature generalization of thestochastic vacuum model, acces-

sible by implementing the Euclidean periodicity of thex4-coordinate. In the deconfinement phase
of interest, such a generalization yields for the spatial string tensionσs(T) a formula [12] similar
to its above-quoted vacuum counterpart. This formula readsσs(T) ∝ µ−2

T

〈

g2(Fa
i j )

2
〉

T , whereµ−1
T

is the correlation length of the chromo-magnetic vacuum, and
〈

g2(Fa
i j )

2
〉

T is the chromo-magnetic
gluon condensate, which survives the deconfinement phase transition. The temperature dependence
of the two main ingredients of the model,µT and

〈

g2(Fa
i j )

2
〉

T , can be extracted from the results of
the lattice simulations [10, 13].

SinceT12 = g2Fa
1µFa

2µ , onea priori expects from the Kubo formula, where the
〈

T12(0)T12(x)
〉

-

correlator enters, that the corresponding contribution tothe shear viscosity isη ∝
〈

g2(Fa
i j )

2
〉2

T .
This is a general prediction of the stochastic vacuum model for all the kinetic coefficients, for
example for the jet quenching parameter ˆq [14]. In fact, according to the Kubo formula, all the
kinetic coefficients are proportional to the total scattering cross section of the propagating parton,
which itself is proportional to

〈

g2(Fa
i j )

2
〉2

T in the stochastic vacuum model [15, 16]. Since the
shear viscosityη and the bulk viscosityζ have the dimensionality of [mass]3, one can on entirely
dimensional grounds expect for the contribution of stochastic background fields to these quantities
the following result:

η ∝ ζ ∝ µ−5
T

〈

g2(Fa
i j )

2〉2
T . (1.1)

At temperatures larger than the temperature of dimensionalreduction,T > T∗, µT and
〈

g2(Fa
i j )

2
〉2

T
are proportional to the corresponding power of the only dimensionful parameter present in the YM
action at such temperatures,g2T, i.e.

µT ∝ g2T,
〈

g2(Fa
i j )

2〉

T ∝ (g2T)4.

On the other hand, the entropy densitys(T) ∝ T3, so that one would get

η
s

∝
ζ
s

∝ g6(T) at T > T∗. (1.2)

Thus, the stochastic vacuum model predicts a monotonic fall-off with temperature of bothη/sand
ζ/s, whereη and ζ are the contributions of stochastic background fields to theshear and bulk
viscosities, respectively. However, much as for thermodynamic quantities [17], one expects that
the full contribution to kinetic coefficients consists of the part produced by the background fields
and the part produced by the so-called valence gluons. The latter can be confined by the back-
ground fields at largespatialseparations, and go over to perturbatively interacting gluons at small
spatial separations. At temperaturesT ≫ T∗, valence gluons interact perturbatively, and should re-
produce known perturbative contributions to kinetic coefficients. The following striking difference
between the two viscosities then occurs. Namely,ζpert

s ∝ g4(T) [18] is as monotonically decreas-

ing as theO(g6)-contribution toζ
s , Eq. (1.2), produced by stochastic background fields. Instead,

ηpert

s ∝ 1
g4(T)

[19], so that the fullηs is eventuallyincreasingwith temperature. Here, we calculate

only the contribution toη
s produced by stochastic background fields, Eqs. (1.1), (1.2). The calcu-

lation of the valence-gluons’ contribution, which should reproduceηpert

s at T ≫ T∗, is postponed

3
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for future studies. Fortunately (see for details the original paper [20]), in our approach based on
the Kubo formula, the perturbative contribution to viscosities can be isolated simultaneously with
the perturbative contribution to the corresponding correlation function of the energy-momentum
tensors. This fact allows us to say that, at least at temperaturesT ≫ T∗, where perturbatively
interacting valence gluons play the main role, their contribution is clearly separated from the con-
tribution of stochastic background fields, which is explored below.

Our study aims at thequantitativecalculation of relations (1.1) forη andζ , and a numerical
comparison of the result forη/swith the 1/(4π)-threshold. In Section 2, by assuming an exponen-
tial fall-off for the two-point correlation function of theenergy-momentum tensors

〈

T12(0)T12(x)
〉

,
we obtain from the Kubo formula an integral equation for the spectral densityρ(ω) of η . Also
in Section 2, by using forρ(ω) a Lorentzian-typeansatz, with the width equal to the correlation
length of

〈

T12(0)T12(x)
〉

, we explore this equation for the cases of large and small|k|’s, wherek is
the number of a Matsubara mode. The solution in the large-|k| limit yields the range of variation of
the numerical parameterα , which enters the initial parametrization of〈T12(0)T12(x)〉. The solution
in the small-|k| limit can only coincide with the large-|k| solution for a single value ofα from this
range. This fixesα completely and makes further calculations straightforward. In Section 3, we
first calculateη analytically, and then use this result to find the ratioη/snumerically. In Section 4,
we obtain by the same method the bulk-viscosity to the entropy-density ratio,ζ/s. In Section 5,
we summarize the results of our study.

2. Shear viscosity from the Kubo formula

Shear viscosityη can be defined through the relation

η = π
dρ
dω

∣

∣

∣

∣

ω=0
, (2.1)

where the spectral densityρ(ω) is a solution to the following integral equation, called Kubo for-
mula [6, 8]

∫ ∞

0
dω ρ(ω)

cosh
[

ω
(

x4− β
2

)]

sinh(ωβ/2)
=

∫

d3x
+∞

∑
n=−∞

〈

T12(0)T12(x,x4−βn)
〉

. (2.2)

The correlation function on the RHS of this equation is Euclidean, the sum runs over winding
modes, and the temperature dependence ofη andρ is for brevity suppressed. Fourier decomposi-
tion of the integral kernel,

cosh
[

ω
(

x4− β
2

)]

sinh(ωβ/2)
= 2Tω

+∞

∑
k=−∞

eiωkx4

ω2 + ω2
k

,

whereωk = 2πTk is thek-th Matsubara frequency, suggests to solve Eq. (2.2) in terms of its Fourier
coefficients. One can show (see for details the original paper [20]) that, if atT = 0,

〈

T12(0)T12(x)
〉

= N(α)
〈

G2〉2 · K2−α(M|x|)
(M|x|)2−α , (2.3)

4
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whereK2−α is the MacDonald function, then atT > Tc the equation for the Fourier coefficients
reads

∫ ∞

0
dω ρ(ω)

ω
ω2+ ω2

k

= π22α Γ(α)N(α)
〈

G2〉2
T · M2α−4

T

(ω2
k +M2

T)α . (2.4)

Henceforth, we denote
〈

G2
〉

≡
〈

g2(Fa
µν)2

〉

,
〈

G2
〉

T ≡
〈

g2(Fa
i j )

2
〉

T , M = 2µ , MT = 2µT . Further-
more,α > 0 is a numerical parameter, andN(α) > 0 is a coefficient, which will be determined.
Equation (2.4) is the central object of the subsequent analysis.

To solve this equation, we assume for the spectral density a Lorentzian-type form (cf. Refs. [6,
8, 21])

ρ(ω) = C(T) · ω
(ω2 +M2

T)α+ 1
2

,

which guarantees that both sides of Eq. (2.4) have the same large-|k| behavior. Thisansatzis
consistent with the interpretation ofMT as a momentum scale below which perturbation theory
breaks down. Shear viscosity can be obtained by means of Eq. (2.1) as

η =
πC(T)

M2α+1
T

. (2.5)

We now solve Eq. (2.4) subsequently for|k| ≫ 1 and|k| ∼ 1, and find bothα andC(T). For
|k| ≫ 1, one can expand

LHS of Eq. (2.4) =
C(T)

ω2α
k

[

π
2sin(πα)

+O

(

M2
T

ω2
k

)

+
∞

∑
i=2

ci

(

MT

ωk

)i−2α]

, (2.6)

so that the leading term in the brackets isk-independent only forα < 1. Using further the expansion

RHS of Eq. (2.4) = π22α Γ(α)N(α)

〈

G2
〉2

T

ω2α
k

M2α−4
T ·

[

1+O

(

M2
T

ω2
k

)]

, (2.7)

we obtain

η(T)
∣

∣

∣

|k|≫1
≃ π22α+1Γ(α)N(α)sin(πα)

〈

G2
〉2

T

M5
T

.

Rather, for|k| ∼ 1, terms of the orderO(ω2i
k /M2i

T ), wherei ≥ 1, can be disregarded, and we obtain

η(T)
∣

∣

∣

|k|∼1
≃ π5/22α+1Γ

(

α +
1
2

)

N(α)

〈

G2
〉2

T

M5
T

.

In particular, atT > T∗, where only the(k = 0)-mode should be considered, this result is exact. As
one can now readily check, the ratio of the two results obtained,

η(T)
∣

∣

∣

|k|≫1

η(T)
∣

∣

∣

|k|∼1

=
Γ(α)sin(πα)
√

πΓ
(

α + 1
2

) for 0 < α < 1

is equal to 1 atα = 1/2. That is, at

α =
1
2
,

our results for the shear viscosity becomek-independent, as they should be. Remarkably, for
α = 1/2, the purely Lorentzian form ofρ(ω) is recovered.

5
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3. Calculation of the ratio η/s

We should now determine the coefficientN(α) in Eq. (2.3) forα = 1/2. To this end, we impose
the Gaussian-dominance hypothesis [9], which disregards the connected part of the correlation
function

〈

T12(0)T12(x)
〉

=
〈

g4Fa
1µ(0)Fa

2µ (0)Fb
1ν(x)Fb

2ν(x)
〉

.

The stochastic vacuum model parametrizes confining self-interactions of the background fields in
the remaining two-point functions as

〈

g2Fa
µν(x)Fb

λρ(0)
〉

= (δµλ δνρ −δµρδνλ ) ·
〈

G2
〉

12(N2
c −1)

δ abD(x), (3.1)

so that

〈T12(0)T12(x)〉 ≃
〈

G2
〉2

72(N2
c −1)

D2(x). (3.2)

The dimensionless functionD(x) is usually chosen in the form

D(x) = e−µ |x|. (3.3)

Plugging this expression into the formula for the string tension in the fundamental representation,

σf =

〈

G2
〉

144

∫

d2xD(x), (3.4)

one can define the gluon condensate in terms ofσf and the vacuum correlation lengthµ−1 as
follows [14, 16]:

〈

G2〉 =
72
π

σfµ2. (3.5)

To obtain for the correlator〈T12(0)T12(x)〉 the functional form given by the RHS of Eq. (2.3),
we modify parametrization (3.3) to

D(x) = A (α)

√

K2−α(2µ |x|)
(2µ |x|)2−α , (3.6)

whereA (α) is a numerical normalization factor. At|x| & µ−1, the new function (3.6) falls off
with the same exponent as Eq. (3.3). To find the normalizationfactorA (α), we plug Eq. (3.6) into
relation (3.4), which holds for any functionD(x). Using further expression (3.5), we obtain

A (α) =
4

∫ ∞
0 dz

√

zαK2−α(z)
. (3.7)

The correlator (3.2) now reads

〈T12(0)T12(x)〉 =
A 2(α)

576

〈

G2〉2 · K2−α(2µ |x|)
(2µ |x|)2−α , (3.8)

where the functionA (α) is given by Eq. (3.7), and we have fixedNc = 3. Comparing Eq. (3.8)
with the original definition (2.3), we conclude that

N(α) =
A 2(α)

576
.

6
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Figure 1: Entropy densitys(T) in the units ofT3 obtained from the lattice values for the pressureplat [13]
(courtesy of F. Karsch).

This yields our principal analytic result:

η(T) =
π5/2

4608
√

2

[A (1/2)
〈

G2
〉

T ]2

µ5
T

, (3.9)

whereA (1/2) ≃ 1.05. The parametric dependence of this expression on
〈

G2
〉

T andµT is indeed
the one following from the elementary dimensional analysismade in Introduction. The correspond-
ing functionC(T) entering the spectral density reads [cf. Eq. (2.5)]

C(T) =
(π

2

)3/2
· A

2(1/2)

576

〈

G2
〉2

T

µ3
T

.

Remarkably, forα = 1/2, the functionD(x) is expressible in terms of elementary functions:

D(x) = A (1/2)

√

K3/2(2µ |x|)
(2µ |x|)3/2

= A (1/2) · π1/4

25/4
· e−µ |x|

µ |x|

√

1+
1

2µ |x| . (3.10)

We evaluate now the(η/s)-ratio numerically. The value of the deconfinement criticaltemper-
ature in SU(3) YM theory, which we assume, isTc = 270MeV [13]. We use the two-loop running
coupling [13]

g−2(T) = 2b0 ln
T
Λ

+
b1

b0
ln

(

2ln
T
Λ

)

, whereb0 =
11Nc

48π2 , b1 =
34
3

(

Nc

16π2

)2

, Λ = 0.104Tc,

and Nc = 3 for the case under study. We also assume forµT and for the spatial string tension
in the fundamental representation,σf(T), the following parametrizations [12, 14]:µT = µ · f (T),

7
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Figure 2: Calculated values of the ratioη/s as a function of temperature. Also shown is the conjectured
lower bound of 1/(4π) for this quantity, realized inN = 4 SYM.

σf(T) = σf · f 2(T), whereµ = 894MeV [10],σf = (0.44GeV)2, and

f (T) ≡
{

1 at Tc < T < T∗,
g2(T)T
g2(T∗)T∗

at T > T∗.

We note that, with these parametrizations adopted, the approximation |k| ≫ 1, used in Eqs. (2.6)
and (2.7), means in practice|k| ≥ 3. In fact, MT

ω3
< 0.35 for anyT > Tc, while the terms disregarded

in those equations are of the order ofO
(

M2
T/ω2

k

)

.
Equation (3.5), extrapolated to finite temperatures, yields the chromo-magnetic gluon conden-

sate
〈

G2
〉

T [12, 14]:
〈

G2〉

T =
72
π

σf(T)µ2
T =

〈

G2〉 · f 4(T)

The value ofT∗ can be obtained from the equationσf(T∗) = σf, whereσf(T) = [0.566g2(T)T]2 is
the high-temperature parametrization of the fundamental spatial string tension [13]. Solving this
equation numerically, one gets

T∗ = 1.28Tc.

The entropy densitys= s(T) can be obtained by the formulas= dplat/dT, where we use for the
pressureplat the corresponding lattice values from Ref. [13]. In Fig. 1, we plots(T) in the units of
T3.

In Fig. 2, we plot the ratioη/s, with η given by Eq. (3.9), as a function of temperature. The
temperature dependence of this ratio is determined by the function

〈

G2
〉2

T/[µ5
Ts(T)]. One can check

numerically that, atT & 2Tc wheres/T3 is nearly constant,
〈

G2
〉2

T/[µ5
Ts(T)] = O

(

g6(T)
)

, as has
been mentioned in Introduction. Instead, atTc < T . 2Tc, the calculatedη/s falls off much more

8
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rapidly, due to the strong variation of the entropy densitys(T) at such temperatures (cf. Fig. 1).
Also in Fig. 2, we plot the conjectured lower bound for the(η/s)-ratio, 1

4π ≃ 0.08, which is realized
in N = 4 SYM [5]. This bound is indeed not reached by our values, although they get very close
to it at the highest temperatureT = 4.54Tc where the lattice data for the pressure (and therefore
also fors) are available. However, as has been discussed in Introduction, it is expected that the
yet unknown contribution of valence gluons should lead to anincrease of the fullη/s at T & 2Tc.
Eventually, atT & (5÷10)Tc, the full η/sshould mergeηpert/s, whereηpert in the next-to-leading
logarithmic approximation reads [19]

ηpert =
T3

g4 · 27.126

ln 2.765
g

.

Thus, the calculated contribution to the(η/s)-ratio produced by stochastic background fields is
anyhow subdominant at sufficiently high temperatures.

4. Bulk-viscosity to the entropy-density ratio, ζ/s

The other coefficient at the first-order derivatives of the velocity of energy transport in the energy-
momentum tensor of a non-ideal liquid is the already mentioned in Introduction bulk viscosityζ .
It describes the degree of non-conformality of the QGP, and vanishes in any conformal field theory,
including N = 4 SYM. Similarly toη , bulk viscosity is defined by its spectral densityρbulk(ω)

as [22]

ζ =
π
9

dρbulk

dω

∣

∣

∣

∣

ω=0
.

The spectral density obeys the Kubo formula

∫ ∞

0
dω ρbulk(ω)

cosh
[

ω
(

x4− β
2

)]

sinh(ωβ/2)
=

∫

d3x
+∞

∑
n=−∞

〈

Tµµ(0)Tνν(x,x4−βn)
〉

.

Here,Tµµ(x) = β(g)
2g [Fa

µν(x)]2 is the nonperturbative contribution to the trace of the YM energy-

momentum tensor. In the one-loop approximation, whereβ (g) ≃ −b0g3, b0 = 11
16π2 , one can ex-

press the correlator
〈

Tµµ(0)Tνν(x)
〉

in terms of the four-point function of gluonic field strengths,
〈

g4Fa
µν(0)Fa

µν(0)Fb
λρ(x)Fb

λρ(x)
〉

. Using further again the Gaussian-dominance hypothesis, one can
approximate this correlation function as follows:

〈

g4Fa
µν(0)Fa

µν(0)Fb
λρ (x)Fb

λρ(x)
〉

≃
〈

G2〉2
+2

〈

g2Fa
µν(0)Fb

λρ(x)
〉2

. (4.1)

The renormalized spectral density is defined by the subtraction from the fullρbulk(ω) of an infinite
contribution produced by the first term on the RHS of Eq. (4.1). The corresponding nonperturbative
contribution to the bulk viscosity can readily be obtained,and reads

ζ =
π5/2b2

0A
2(1/2)

6912
√

2
·
〈

G2
〉2

T

µ5
T

. (4.2)

9
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Figure 3: Calculated ratioζ/s as a function of temperature. Also shown for comparison are perturbative
valuesζpert/sextrapolated down toT = Tc.

The bulk-viscosity to the entropy-density ratioζ/sas a function of temperature is plotted in Fig. 3.
For comparison, in the same Fig. 3, we plot the ratioζpert/s, where the perturbative bulk viscosity,

ζpert =
0.443α2

s T3

ln(7.14/g)
, (4.3)

has been obtained in Ref. [18] in the leading logarithmic approximation. For illustration, in Fig. 3,
we extrapolate this weak-coupling formula, valid atT & (5÷ 10)Tc, down toT = Tc. We note
once again that, at temperaturesT ≫ T∗, Eq. (4.2) yields(ζ/s) ∝ g6, whereas Eq. (4.3) yields
(ζpert/s) ∝ g4, in a qualitative agreement with the corresponding curves in Fig. 3.

5. Concluding remarks and outlook

The main result reported in this talk is the contribution produced by stochastic background fields
to the shear viscosityη in SU(3) YM theory. As has been expected (cf. Introduction),the calcu-
lated contribution toη turns out to be∝ µ−5

T

〈

g2(Fa
i j )

2
〉2

T , where the corresponding proportionality
coefficient given by Eq. (3.9) is the main result of our study.The ratio ofη to the entropy density
as a function of temperature is plotted in Fig. 2. Surprisingly, our results for the contribution to
η/s produced by stochastic background fields are of the order of 1/(4π), that is the conjectured
lower bound for this ratio achievable inN = 4 SYM. Moreover, unlike that theory, our results are
temperature-dependent. The rapid variation at temperaturesTc < T . 2Tc of the calculated con-
tribution toη/s, visible in Fig. 2, could mean that stochastic background fields drive the fullη/s
towards a minimum, which occurs in this temperature range. At higher temperatures (T & 2Tc), the
calculated values should become subdominant compared to the contribution produced by valence
gluons, which should provide an increase of the fullη/s towards the known perturbative result.

10



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
0
2

Shear and bulk viscosities in the stochastic-vacuum approach Dmitri Antonov

We would also like to emphasize an interesting fact, which has been realized by the end of the
calculation. We have started with the generalα-dependent Lorentzian-typeansatzfor the spectral
densityρ(ω). By using it in the Kubo formula, we have come to the conclusion that only for
the single value,α = 1/2, thisansatzprovides the Matsubara-mode independence ofρ(ω). For
this value ofα , the spectral density takes the conventional Lorentzian form. In this way, also
the functionD(x) in the correlator (3.1) is defined unambiguously. Moreover,it turns out to be
expressible in terms of elementary functions, cf. Eq. (3.10).

Furthermore, we have calculated the contribution of stochastic background fields to the bulk
viscosity ζ . Its ratio to the entropy density,ζ/s, is plotted in Fig. 3, in comparison with the
known perturbative result [18] extrapolated down toT = Tc. By using the same approach, one can
also calculate the contribution ofnon-confiningself-interactions of stochastic background fields,
parametrized by the so-called functionD1(x) [9, 16]. This work is currently in progress. Still, the
main problem is to calculate the contribution of valence gluons to bothη andζ , that should provide
an interpolation with the known perturbative results at sufficiently high temperatures.
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