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In the last two years, ab-initio lattice gauge theory corapahs using extremely large vol-
umes have firmly established that (in the Landau gauge) tHe @@on propagator and the ghost
dressing function are infrared (IR) finite and non-vanighih, 2]. Specifically choosing &R; type
of gauge and defining the gluon propagator cofaftand the ghost dressing functiénas

9ud F(q?
lazv ) D( 2) =1 ;2 )7 (1)
whereP,, (q) = guv — quQv/q? is the transverse projectdy; 1(g?) = g?+iM(g?) [with My (q?) =

Puv ()M (g?) the gluon self-energy], anbl(g?) is the ghost propagator, lattice results tells us that
(Euclidean space)

Dy () = =i |Puy(Q)A(G7) + &

A~Y0)>0, and F(0)>0. 2)

The issue of explaining these clean lattice results fronpthiet of view of the continuum formu-
lation of the theory has therefore become an increasingbresting topic, for obtaining them is
bound to expose a QCD fundamental dynamical mechanism &t wor

Indeed, such a mechanism is provided by the dynamical gaémeraf a gluon mass [3]
through the non-perturbative realization of the well-kmomechanism described long ago by
Schwinger [4]. Schwinger mechanism shows that if for sonasaa the dimensionless vacuum
polarization(g?)/g? behaves as a simple pole with positive resigifeat g°> = 0 (an there is
no physical principle precluding this possibility) than'(g?) = g2 + u?: Thus the vector meson
(which is massless in the absence of interactions) beconassive, withA=1(0) = u?. When
the theory is strongly coupled, as it happens with QCD in ®Rgstrong binding may generate
zero-mass bound state excitations which, notwithstanttiegact that they do not generate from
the spontaneous breakdown of any symmetry, acts like nsssstemposite and longitudinally
coupled (dynamical) Nambu-Goldstone bosons [5].

The implementation of this mechanism within the pinch téghe (PT) framework [3, 6, 7],
gives rise to two complementary effects, which appearseatetiel of the QCD Schwinger-Dyson
equations (SDEs), and of the effective low-energy theoricividescribes QCD in the IR sector,
eventually providing a confinement mechanism.

e Schwinger-Dyson equation¥he systematic exploitation of the underlying BRST symmetr
provided by the PT originate drastic modifications to the éai® functions of the theory
and the corresponding SDEs which describes their dynarmcparticular the new SDE
obtained for the gluon propagator lend itself to a noveldation scheme that respects gauge
invariance at every level of the dressed loop expansiorJ8te this scheme is used together
with the assumption that the three-gluon vertex contaimachjcal massless poles (L/q?)
triggering the Schwinger-mechanism, one obtains IR firotat®ns for the propagator [9].
These solutions are of the type!(g?) = g2 + m?(g?) with the mass depending non-trivially
on the momentum transfer, and with (obviously)1(0) = n?(0) = m3 > 0 (Fig. 1, left
panel). In addition of taming the IR divergences intringcperturbation theory (Landau
pole) this mass forceB (¢?) to stay IR finite withF(0) > 0 (Fig. 1, right panel), and no
enhancement is found [10].

o Effective low-energy theoryAn effective low-energy field theory for describing the ghuo
mass is the gauged non-linear sigma model known as “massiugeginvariant Yang-
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Figure 1. Left Panel The numerical solution for the gluon propagator from therRddified SDE (black
solid line) compared to the lattice data of [Right panel The ghost dressing functigo?D(p?) obtained
from the SDE. In the inset we show the lattice data for the squiaatity; notice the absence of any enhance-
ment in both cases.

Mills” [11], with Lagrangian density
1
2
whereA,, = % Y aAaAf, theA, are the SU(3) generators (withABAp = 28,p), and theN x N

unitary matrixU (6) = exp[i31.62] describes the scalar fiel@s. Note that%,, is locally
gauge-invariant under the combined gauge transformation

gMYM = Fﬁv - m%Tr [A/J - gilu (B)aIJU 71(9)] 27 (3)

A, =VANT—g gVt U =U(8)=VU(b), (4)

for any group matrixy¥ = exp[i%/\awa(x)], where w?(x) are the group parameters. One
might think that, by employing (4), the fields;, can always be transformed to zero, but
this is not so if thed, contain vortices. To use th&,,, in (3), one solves the equations of
motion forU in terms of the gauge potentials and substitutes the resthlieiequations for the
gauge potential. One then finds the Goldstone-like massiesies mentioned above. This
model admits vortex solutions [11], with a long-range puagige term in their potentials,
which endows them with a topological quantum number comedimg to the center of the
gauge group4y for SU(N)], and is, in turn, responsible for quark confinement and gluo
screening. Specifically, center vortices of thicknessy, ! form a condensate because their
entropy (per unit size) is larger than their action. Thisdamsation furnishes an area law
to the fundamental representation Wilson loop, thus camjimjuarks [3, 11]. In addition,
the adjoint potential shows a roughly linear regime followsy string breaking when the
potential energy is aboun®, corresponding to gluon screening [12].

Thus, summarizing, in this picture the non-perturbativeDQdynamics generate an effective,
momentum dependent mass, without affecting the 18t#I3) invariance, which remains intact.
This provides in turn very definite predictions about the #Hévior of the theory (all in agreement
with lattice studies):if the gluon propagator is IR finiteij ) in the Landau gauge the ghost remains
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massless, but with a finite dressing function; the preseficerder vortex solutions providingji()
an area law for the Wilson loop anY a roughly linear behavior for the adjoint potential follegv
by string breaking.

A different set of predictions is obtained within the Kuggirta (KO) scenario, which also
establishes a highly non-trivial link between confinemerd the infrared behavior of some fun-
damental Green'’s functions of QCD [13]. In the KO confinemgnture one starts by observing
that the equation of motion for the gauge field can be writtethe Maxwell-like formd“Fg, +
{Qersm (ZuC)%} = gJ7, with J7 the Noether current of the global color symmet#y, the usual co-
variant derivative, an@grsr the BRST charge operator. On the other hand, if one adds t@tnBio
current the derivative of an antisymmetric rank 2 tensoy @4f(, ,,)) the resulting current is still
preserved and the corresponding charge correctly gesewatgions in color space. Thus one is,
at least in principle, allowed to define the color cha@jen the BRST exact form

1 1
Q*= /d3X <J8— 6(9"'%%) = /dsxé{QBRsTa (Z00)%}. ()

Confinement is then a direct consequence of the above relaiitce for any physical state speci-
fied by the conditiorQgrsr/phys = 0 one hagphygQ?|phys) = 0, which implies that all physical
states are color-singlets [13].

The problem is however that the volume integral in Eq. (5)sdoet converge, due to the
presence of massless one particle contribution$jt@"Fg,, and{Qgrs, (7€)%} (the so-called
guartet mechanism). Without entering into any detail, oae that a solution to this problem
is provided by introducing some suitable weigkitsv and u respectively, so that a well defined
charge is given by

Q= / x (B+20"F8),  gv=—w+(1+u) (6)

where the relation represents the condition between therelit weights for the cancellation of the
aforementioned one-particle massless contributionss,Tieguiring that Eq. (6) coincides with the
BRST exact expression (5) impliggw = —1/g, and therefore the KO confinement criterion [13]

1+u=0. (7)

It turns out that in the Landau gauge the so-called KO paranueis linked to the IR limit
o?> — 0 of a certain Green’s function; more precisely one has

/ d*xe (T [(20)7 (2u0)y]) = — qgg‘v 8™+ Py (9)8™"u(cf), (8)
Iimou(qz) =u(0) =u. (9)
02—

In addition, there is a powerful BRST identity relating th@Hunctionu(g?) and the ghost dressing
functionF (?), namely [14, 15]

FY(0P) = 1+ u(q?) +w(aP), (10)
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where for nomw(qg?) is an unspecified function, which under very general comuitiis such that
w(0) = 0. Then, Eqg. (10) tells us that the KO confinement scenaridigiean IR divergent ghost
dressing function, at odds with the aforementioned lardermes lattice simulatiorts

An issue that to the best of our knowledge has never beenubblpaddressed in the KO sce-
nario is how renormalization affects the proof of the cdrittantity (7). On the other hand, and at
a less formal level, one should notice that once the relat{@hare proved, the KO function is on a
par with any other QCD Green’s function: quantum correctianll set in, and the whole procedure
of regularization and renormalization should be applietisTn general implies the unavoidable
appearance of a dependence in the Green’s function (9) olidanfsscale” u. This dependence
disappearonly (i) when combining individual Green’s functions to form ohsdsles, such aS
matrix elements, orii) when forming very special (and very well studied) produztsGreen’s
functionsand the gauge coupling of the theory. The latter are the sogafieormalization-group
(RG) invariant combinations, with the produgtA in QED constituting probably the most cele-
brated text-book case. Whether a product of Green’s fungtiorms a RG-invariant combination
or not is determined oformal grounds, from the Ward-Takahashi or Slavnov-Taylor idigi
satisfied by the quantities involved.§, the famousz; = Z, of QED). The Green’s function of
Eq. (9) is definitely not an RG-invariant [17], and therefpieks up a non-trivial dependence on
. Thus, one has(g?, u?), and in particular, in the deep IR limit,= u(0, u?).

Now, if the KO confinement criterion (7) were satisfied, theogthdressing function must
diverge asy® — 0, due to the BRST identity (10). This will in turn make thedependence of the
KO function (which is however still there) irrelevant, sing(g?, u?) will be then driven to -1 in
the deep IR limit for any value gfi. On the other hand, lattice simulations tells us that thesgho
dressing function is finite, and it is interesting to deterenexplicitly theu-dependence of the KO
function.

Quite remarkably this issue can be thoroughly studied withe modern formulation of the
PT (by means of the Batalin-Vilkoviski quantization fornsah [18]) exploiting in particular the
PT correspondence [7, 19] with the background field methdeMB[20]. Indeed, it turns out
that [15, 17], in the (background) Landau gauge, the Kugm@®ijfunction coincides with the
form factor G(g?) multiplying guv in the Lorentz decomposition of a certain auxiliary funatio
Ayv(0) which enters in all the so-called “background-quantum™iitees [21], i.e., the infinite
tower of non-trivial relations connecting the BFM Greeniaétions to the conventional onesd,
calculated in thé&}; gauges). In additior(q?) is a key element in the aforementioned new SDEs
that can be truncated in a manifestly gauge invariant way.

Let us recall that in the BV formulation of Yang-Mills thees [18], one starts by introducing
certain sources (called anti-fields in what follows) thasa#e the renormalization of compos-
ite operators; the latter class of operator is in fact boundgpear in such theories due to the
non-linearity of the BRST transformation of the elementfiejds. In much the same way, the

1The same prediction is obtained when implementing the ifalyyGribov-Zwanziger (GZ) horizon condition [16]:
in the IR region the ghost propagator diverges more rapluiy @t tree-level. Furthermore, it has been also argued that
the Landau gauge gluon propagator should vanish in the samite The prediction for the gluon propagator in the
KO scenario is instead that it is less divergent than theleea expression which, evidently, encompasses the ligefin
gluon propagator as a special case, even though, up urgihttgcthe focus had been placed rather on the “vanishing”
solutions, given that they satisfy simultaneously bothKileand GZ requirements.
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Figure2: Diagrammatic representation of the functignandH.

quantization of the theory in a background field type of garggriires, in addition to the afore-
mentioned anti-fields, the introduction of new sources Whiicuple to the BRST variation of the
background fields [21]. These sources are sufficient foremeinting the full set of symmetries of
a non-Abelian theory at the quantum level, and in the caseiafidessSU(N) QCD, lead to the
master equation

/ d*x

In the formula abovel is the effective actionA* andc* the gluon and ghost anti-field is
the gluon background field, ard the corresponding background source; findlylenotes the
Nakanishi-Lautrup multiplier for the gauge fixing conditio

To determine the complete algebraic structure of the theermeed two additional equations.
The first one is the Faddeev-Popov equation, that contrelsebult of the contraction of an anti-
field leg with the corresponding momenta. In position spaceads

—0. (11)

or or +5r£+ mi_i_ m i_i
A OAT T Benacm | oan M\ gAm  BAT

m
or ~ ol m
_ H —(9HQ =0 12
ocn + ('@ 5At1> (9 H) ) ( )

where(ZH®)M = gHOM + gfMMAJ @' [in the case of ZH®)™ replace the gluon field with a
background gluon fiel&]. The second one is the anti-ghost equation formulatedamétkground
field Landau gauge, which reads [15]

or @u or

m or
_ - U ax\M _ emnrs«nr mnr -
5o —5Qu> (2HA,) " — fMee! 4 f 55 =0 (13)

This equation fully constrains the dynamics of the ghostifieland implies that the latter will not
get an independent renormalization constant. The local fifithe anti-ghost equation (13) is only
valid when choosing the background Landau gauge concﬂ@)‘m“)m = 0; in the usual Landau
gaugedHAll = 0, an integrated version of this equation is available. ¢t faven though the results
that follow will be derived for convenience in the backgrdurandau gauge, they are valid also in
the conventional Landau gauge of tRg.
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Now, differentiation of the functional (11) with respectd@ombination of fields containing at
least one ghost field or two ghost fields and one anti-field gatiihg the fields and sources to zero
afterwards) will provide the Slavnov-Taylor identitiestb® theory. Differentiation with respect to
a background source and background or quantum fields wiiigeoinstead, the aforementioned
background-quantum identities. Finally, differentiatiof (12) and (13) with respect to fields and
anti-fields or background sources give rise to relation aptba different auxiliary ghost functions
appearing in the theory.

The important point is that, when carrying out these difféiggions, the following function
appears (Fig. 2)

iAu(d) = Touas(0) = G°Ca /k HioD(K+ q)A°° (K) Hoy (K, ),

— igwe<q2>+iq;§“uq2>, (14)

In the equations above, the color fac@®P" has been factored out (as always in what follows),
Ca represents the Casimir eigenvalue of the adjoint repragent[Ca = N for SU(N)], and

Ji = 1% (2m)~9 [d9, with d = 4 — € the dimension of space-time. Finally, the functigpy (k,q)
(see Fig. 2 again) is in fact a familiar object, for it appaarthe all-order Slavnov-Taylor identity
satisfied by the standard three-gluon vertex; it is alsdedlto the full gluon-ghost vertek, (k, q)

by the identityg”H,,, (k,q) = —il ,(k,q) [at tree-levelHY) = ig,, andl{{ (k,q) = —q]. Indeed
one finds the following results

(i) When differentiating the functional (11) with respect tovakground source and a back-
ground gluon, on the one hand, and a background source arahtuqugluon, on the other,
we can combine the resulting equation and trade the reguito point functions for the
corresponding propagators to get the important backgrouagitum identity

At = [1+G(cP)]*A7 (). (15)

The quantit)ﬁ(qz) appearing on the left-hand side of the above equation aagpthbe running
of the QCDg function, exactly as it happens with the QED vacuum poléoea for every
value of the (quantum) gauge-fixing parameter one has (abrieeloop level)A~1(¢?) =
0°[1+ bg?log(g?/u?)] whereb = 11Ca /4817, It is the identity (15) that plays a central role
in the derivation of the new set of SDEs that can be truncatedanifestly gauge invariant
way.

(ii) If we consider the background Landau gauge, differentiathe ghost equation (12) with
respect to a ghost field and a background source, and thgtaogt-equation (13) with respect
to a gluon anti-field and an anti-ghost, we get the relations

Fec(q) = —ig"Tea; (O) Fen, (Q) = qu+9"Apv(9), (16)
Cea; (@) = av+ 9" Apv(a), Fee(q) = —id" e, (Q). (17)

Next, contracting the first equation in (17) witff, and making use of the first equation
in (16), we see that the dynamics of the ghost sector is gntiegptured by\,, (q), for one
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Figure 3: Connected components contributing to the func@jj(q).

has I'z(q) = q2+q“q"/\w(q). Then, introducing the Lorentz decompositidisgy, (q) =
0.C(0?) andl g, () = q,E(g?) we find the identities [15]

C()=E(q)=F ), F N =1+G(q)+L(c). (18)

Recalling that the dimension of the gluon anti-fiédtlis three, while the dimension of the
Q source is one, power counting shows that all functions apmge#n Egs. (16) and (17)
are divergent, and in particular that the divergent pan@f(q) can be proportional tg,,
only [15, 22], so that.(¢?) is ultraviolet finite.

(i) In the background Landau gauge the function appearing eththof Eq. (8) is precisely
given by
5°W
__@Mn - -
whereW is the generator of the connected Green’s functions, ansMieonnected diagrams
contributing to%,,,, are shown in Fig. 3. Factoring out the color structure andingpkse of
the identities (18) one has
: quq
~i%10(@) = Auv(Q) +T0,e(@D(E) M aiel() = —= 5~
Passing to the Euclidean formulation, and comparing with By we then arrive at the
important equality

+Puw(@)G(d?).  (20)

u(e?) = G(aP). (21)

Then, the usual KO confinement criterion may be equivalerat in the form: % G(0) =0;
moreover we see that the unspecified functido?) appearing in Eq. (10) coincides in fact
with the L(g?) form factor appearing in (14).

We thus see that in the (background) Landau gauge the simgitidn G(q?) is an extremely
interesting object to study, since its IR behavior detegmimuch of the IR behavior of the theory.
Now, keeping the verticeB,(k,q) andHy(k,q) at their tree-level values, one finds that the dy-
namical equations fdf (q?), G(¢?) = u(g?) andL(g?) are completely determined by the gluon and
ghost propagator [22]

)2
F o) = 1+92(:A/k {1—%} A(K)D(k+q),
2 Y
@) = T3 [ 2+ G| aoikca),
2 2
L) = 522 / [1_4%233 ]A(k)D(k+q). (22)
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Figure4: Left panel —u(g?) determined from Eq. (24) at different renormalization gejm = 3.0,3.6,4.3
GeV.Right panel Same as in the previous panel but this timelfay?).

Now, as discussed in detail in [22], these (unrenormalieegiations must be properly renor-
malized,i.e., in such a way as to preserve the validity of the BRST idenmit{10), which should
not be deformed by the renormalization process. Note intfadtEq. (10) constrains the cutoff-
dependence of the unrenormalized quantities invalv&pecifically, if we denote by the ghost
wave-function renormalization constant, wElaF(;1 = F~! and with Z, the (yet unspecified)
renormalization constant of the functigky, (q), with® ZA[g"¥ +AL"] = gHV + AHY, one finds
that in order to preserve the identity (10) one has to imhse Z; [22]; as a result, one finds the
relation

Ze(IN?, u?)[14Uo(qF, A%) + Lo(0P, A%)] = 1+ u(e?, %) + L (o, 1?). (23)

Imposing then the renormalization conditi&i{u?) = 1, going to Euclidean space, settigg=
x, k% = y and as = g?/4m, and implementing the standard angular approximation, fioiks the
renormalized equations

Fi(x) = Zo— C;S;? [@ /Oxdy y(3— 3—2) A(y)+/xwd)/<3— 3) A(Y)F(Y)] ;

14+u(x) = Zc— Ofg/: @/Oxdy y(3+ %() A(y)+/xwdy<3+3—);> A(y)F(y)] ,
L(x) = Of;’: % /0 dy YA(y) +x /X wdyiA(y)yF (y)]. (24)

From this last equation it is easy to seeg, by means of the change of variables zX that if A
andF are IR finite, therL(0) = 0, as mentioned before.

At this point one can substitute into the equations abovavhd#able lattice data on the gluon
and ghost propagators thus determining in an indirect wayftinctionsu andL. The results

2It is easy to recognize, for example, by substituting int) @ee-level expressions, that1(g?) andu(g?) have
the same leading dependence on the ultraviolet cutpfiamelyF (%) = uw (q?) = 992/6417% log(A2/q?), while
L(c?) is finite (independent of).

3The inclusion of theg,y term is absolutely essential for the self-consistency eféhtire renormalization pro-
cedure. To be sure, tig,, term appears naturally, given, for example, the form of tuem propagator background
quantum identity [17].
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Figure5: The renormalization-group invariant prodmﬂqz) obtained combining the lattice results for the
gluon propagator and our solutions for the functigg?) = G(g?) according to Eq. (25)

are shown in Fig. 4, from which we explicitly see tpedependence of the KO function and in
particular of the KO parameter, as well as the vanishing éndiep IR of the_(g?) form factor.
Notice that the KO function saturates in the deep IR at theefal(0) ~ —0.6.

Now, it is well-known that the produd®A(c?) is a RG-invariant quantity, representing the
non-Abelian generalization of the QED quant#§A(g?). Then using Eq. (15) we find that the
product

~

2(1,2 2 2

1+u(e? p?)2’
is RG-invariant. But this then shows definitively thgtthe KO function cannot be an RG-invariant
combination sinceii() its ¢ dependence must be such that it cancelstbdependence of the
numerator, as it is explicitly shown in Fig. 5.

The u-dependence of the KO parameter is displayed in the leftlpdifrég. 6; the observeg-
dependence is really sizable when contrasted with the gspe absence of any such dependence
displayed by the genuinely RG-invariant quantity given i £25) which was computed using
exactly the same sets of lattice data (Fig. 5). On the righepaf the same figure we show finally
a comparison between our indirect determination of the K&tion and the direct one obtained
in [24] where the function (9) was studied by means of Montddaverages: evidently the two
curves compare rather well.

Let us finally take a closer look at the background-quantuemtity (15); due to the central
equality of Eqg. (21), we have that in the Landau gauge

u() = /== —1. (26)

“4A value for the KO parameter o£2/3 has been in fact predicted in [23] by studying how the presesf the
Gribov horizon affects the KO criterion. However since thi a residual dependence pA of the KO parameter we
consider this a coincidence due to the choice of the rend@atain point rather than a fundamental prediction of the
theory.

10
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Figure 6: Left panel The dependence of the KO paramatam the renormalization point; the red solid
line corresponds to a fit of a phase transition type= a(u? — b)¢, with parametera = 0.633,b = 3.57,

¢ = 0.025. Right panel The KO function,—u(g?), obtained from the solution of Eq. (24) (solid black line)
compared to the lattice data of [24]at=4GeV

Interestingly enough, this simple formula expresses thefig@tion in terms of two gluon prop-
agators calculated in the Landau gauge of two very distinafgg-fixing schemes, with no direct
reference to the ghost sector of the theory. This observaifiens up the possibility of deduc-
ing the structure of the KO function using an entirely diffet, and completely novel, approach.
Specifically, one may envisage a lattice simulatiohA; then,u(g?) may be obtained from (26) by
simply forming the ratio of the two gluon propagators. GiveatA(0) is found to be finite on the
lattice [1, 2], it is clear that, in order for the standard Karion to be satisfied.€., u(0) = —1),

A must diverge in the IR. Needless to say, we consider suchreagoehighly unlikely. What is
far more likely to happen, in our opinion, is to find a perfedthite and well-behaved, which in
the deep IR will be about an order of magnitude larger thgd), furnishing a valuei(0) ~ —0.6,
namely what we have found in our analysis. In fact, one maythe argument around: combining
the results of this article with the lattice data ff1, 2], one may use (26) to predict the outcome
of the lattice simulation foA; our prediction for the case &U(3) is shown in Fig. 7.
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