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On the dynamics of the Kugo-Ojima function
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In this talk, after reviewing the dynamical gluon mass generation mechanism within the pinch

technique framework and its phenomenological predictions, we will introduce the modern formu-

lation of the pinch technique which makes extensive use of the Batalin-Vilkovisky quantization

formalism. In this framework a certain auxiliary functionΛµν(q) – and its associated form factors

G(q2) andL(q2) – play a prominent role. After showing that in the (background) Landau gauge

Λµν(q) fully constrains the QCD ghost sector, we show thatG(q2) coincides with the Kugo-

Ojima functionu(q2), whose infrared behavior has traditionally served as the standard criterion

for the realization of the Kugo-Ojima confinement mechanism. The determination of the behavior

of G(q2) (and therefore of the Kugo-Ojima function) for all momenta through a combination of

the available lattice data on the gluon and ghost propagators as well as the dynamical equation

G(q2) satisfies, will be then discussed. In particular we will showthat (i) in the deep infrared the

function deviates considerably from the value associated with the realization of the Kugo-Ojima

confinement scenario, and (ii ) establish the dependence on the renormalization point ofu(q2),

and especially of its value atq2 = 0.
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In the last two years, ab-initio lattice gauge theory computations using extremely large vol-
umes have firmly established that (in the Landau gauge) the QCD gluon propagator and the ghost
dressing function are infrared (IR) finite and non-vanishing [1, 2]. Specifically choosing anRξ type
of gauge and defining the gluon propagator cofactor∆, and the ghost dressing functionF as

∆µν(q) = −i

[
Pµν(q)∆(q2)+ ξ

qµqν

q2

]
, D(q2) = i

F(q2)

q2 , (1)

wherePµν(q) = gµν −qµqν/q2 is the transverse projector,∆−1(q2) = q2+ iΠ(q2) [with Πµν(q2) =

Pµν(q)Π(q2) the gluon self-energy], andD(q2) is the ghost propagator, lattice results tells us that
(Euclidean space)

∆−1(0) > 0, and F(0) > 0. (2)

The issue of explaining these clean lattice results from thepoint of view of the continuum formu-
lation of the theory has therefore become an increasingly interesting topic, for obtaining them is
bound to expose a QCD fundamental dynamical mechanism at work.

Indeed, such a mechanism is provided by the dynamical generation of a gluon mass [3]
through the non-perturbative realization of the well-known mechanism described long ago by
Schwinger [4]. Schwinger mechanism shows that if for some reason the dimensionless vacuum
polarizationΠ(q2)/q2 behaves as a simple pole with positive residueµ2 at q2 = 0 (an there is
no physical principle precluding this possibility) then∆−1(q2) = q2 + µ2: Thus the vector meson
(which is massless in the absence of interactions) becomes massive, with∆−1(0) = µ2. When
the theory is strongly coupled, as it happens with QCD in the IR, strong binding may generate
zero-mass bound state excitations which, notwithstandingthe fact that they do not generate from
the spontaneous breakdown of any symmetry, acts like massless, composite and longitudinally
coupled (dynamical) Nambu-Goldstone bosons [5].

The implementation of this mechanism within the pinch technique (PT) framework [3, 6, 7],
gives rise to two complementary effects, which appears at the level of the QCD Schwinger-Dyson
equations (SDEs), and of the effective low-energy theory which describes QCD in the IR sector,
eventually providing a confinement mechanism.

• Schwinger-Dyson equations.The systematic exploitation of the underlying BRST symmetry
provided by the PT originate drastic modifications to the Green’s functions of the theory
and the corresponding SDEs which describes their dynamics;in particular the new SDE
obtained for the gluon propagator lend itself to a novel truncation scheme that respects gauge
invariance at every level of the dressed loop expansion [8].Once this scheme is used together
with the assumption that the three-gluon vertex contains dynamical massless poles (∼ 1/q2)
triggering the Schwinger-mechanism, one obtains IR finite solutions for the propagator [9].
These solutions are of the type∆−1(q2) = q2+m2(q2) with the mass depending non-trivially
on the momentum transfer, and with (obviously)∆−1(0) = m2(0) = m2

0 > 0 (Fig. 1, left
panel). In addition of taming the IR divergences intrinsic to perturbation theory (Landau
pole) this mass forcesF(q2) to stay IR finite withF(0) > 0 (Fig. 1, right panel), and no
enhancement is found [10].

• Effective low-energy theory.An effective low-energy field theory for describing the gluon
mass is the gauged non-linear sigma model known as “massive gauge-invariant Yang-
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Figure 1: Left Panel: The numerical solution for the gluon propagator from the PTmodified SDE (black
solid line) compared to the lattice data of [2].Right panel: The ghost dressing functionp2D(p2) obtained
from the SDE. In the inset we show the lattice data for the samequantity; notice the absence of any enhance-
ment in both cases.

Mills” [11], with Lagrangian density

LMYM =
1
2

F2
µν −m2

0Tr
[
Aµ −g−1U(θ)∂µU−1(θ)

]2
, (3)

whereAµ = 1
2i ∑a λaAa

µ , theλa are the SU(3) generators (with Trλaλb = 2δab), and theN×N
unitary matrixU(θ) = exp

[
i 1
2λaθa

]
describes the scalar fieldsθa. Note thatLMYM is locally

gauge-invariant under the combined gauge transformation

A′
µ = VAµV−1−g−1[∂µV

]
V−1, U ′ = U(θ ′) = VU(θ), (4)

for any group matrixV = exp
[
i 1
2λaωa(x)

]
, whereωa(x) are the group parameters. One

might think that, by employing (4), the fieldsθa can always be transformed to zero, but
this is not so if theθa contain vortices. To use theLMYM in (3), one solves the equations of
motion forU in terms of the gauge potentials and substitutes the result in the equations for the
gauge potential. One then finds the Goldstone-like masslessmodes mentioned above. This
model admits vortex solutions [11], with a long-range pure gauge term in their potentials,
which endows them with a topological quantum number corresponding to the center of the
gauge group [ZN for SU(N)], and is, in turn, responsible for quark confinement and gluon
screening. Specifically, center vortices of thickness∼ m−1

0 , form a condensate because their
entropy (per unit size) is larger than their action. This condensation furnishes an area law
to the fundamental representation Wilson loop, thus confining quarks [3, 11]. In addition,
the adjoint potential shows a roughly linear regime followed by string breaking when the
potential energy is about 2m0, corresponding to gluon screening [12].

Thus, summarizing, in this picture the non-perturbative QCD dynamics generate an effective,
momentum dependent mass, without affecting the localSU(3) invariance, which remains intact.
This provides in turn very definite predictions about the IR behavior of the theory (all in agreement
with lattice studies): (i) the gluon propagator is IR finite; (ii ) in the Landau gauge the ghost remains

3
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massless, but with a finite dressing function; the presence of center vortex solutions providing (iii )
an area law for the Wilson loop and (iv) a roughly linear behavior for the adjoint potential followed
by string breaking.

A different set of predictions is obtained within the Kugo-Ojima (KO) scenario, which also
establishes a highly non-trivial link between confinement and the infrared behavior of some fun-
damental Green’s functions of QCD [13]. In the KO confinementpicture one starts by observing
that the equation of motion for the gauge field can be written in the Maxwell-like form∂ νFa

µν +

{QBRST,(Dµ c)a}= gJa
µ , with Ja

µ the Noether current of the global color symmetry,Dµ the usual co-
variant derivative, andQBRST the BRST charge operator. On the other hand, if one adds to a Noether
current the derivative of an antisymmetric rank 2 tensor (say ∂ µ f[µ ,ν ]) the resulting current is still
preserved and the corresponding charge correctly generates rotations in color space. Thus one is,
at least in principle, allowed to define the color chargeQa in the BRST exact form

Qa =
∫

d3x

(
Ja

0 −
1
g

∂ νFa
0ν

)
=
∫

d3x
1
g
{QBRST,(D0c)a}. (5)

Confinement is then a direct consequence of the above relation, since for any physical state speci-
fied by the conditionQBRST|phys〉 = 0 one has〈phys|Qa|phys′〉 = 0, which implies that all physical
states are color-singlets [13].

The problem is however that the volume integral in Eq. (5) does not converge, due to the
presence of massless one particle contributions toJa

µ , ∂ νFa
µν , and{QBRST,(Dµ c)a} (the so-called

quartet mechanism). Without entering into any detail, one has that a solution to this problem
is provided by introducing some suitable weightsv, w andu respectively, so that a well defined
charge is given by

Qa =

∫
d3x

(
Ja

0 +
v
w

∂ νFa
0ν

)
, gv= −w+(1+u) (6)

where the relation represents the condition between the different weights for the cancellation of the
aforementioned one-particle massless contributions. Thus, requiring that Eq. (6) coincides with the
BRST exact expression (5) impliesv/w = −1/g, and therefore the KO confinement criterion [13]

1+u = 0. (7)

It turns out that in the Landau gauge the so-called KO parameter u is linked to the IR limit
q2 → 0 of a certain Green’s function; more precisely one has

∫
d4xe−iq·(x−y)〈T

[(
Dµc

)m
x

(
Dµ c̄

)n
y

]
〉 = −

qµqν

q2 δ mn+Pµν(q)δ mnu(q2), (8)

lim
q2→0

u(q2) = u(0) = u. (9)

In addition, there is a powerful BRST identity relating the KO-functionu(q2) and the ghost dressing
functionF(q2), namely [14, 15]

F−1(q2) = 1+u(q2)+w(q2), (10)

4
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where for noww(q2) is an unspecified function, which under very general conditions is such that
w(0) = 0. Then, Eq. (10) tells us that the KO confinement scenario predicts an IR divergent ghost
dressing function, at odds with the aforementioned large volumes lattice simulations1.

An issue that to the best of our knowledge has never been thoroughly addressed in the KO sce-
nario is how renormalization affects the proof of the central identity (7). On the other hand, and at
a less formal level, one should notice that once the relations (9) are proved, the KO function is on a
par with any other QCD Green’s function: quantum corrections will set in, and the whole procedure
of regularization and renormalization should be applied. This in general implies the unavoidable
appearance of a dependence in the Green’s function (9) on a “sliding scale”µ . This dependence
disappearsonly (i) when combining individual Green’s functions to form observables, such asS
matrix elements, or (ii ) when forming very special (and very well studied) productsof Green’s
functionsand the gauge coupling of the theory. The latter are the so-called renormalization-group
(RG) invariant combinations, with the producte2∆ in QED constituting probably the most cele-
brated text-book case. Whether a product of Green’s functions forms a RG-invariant combination
or not is determined onformal grounds, from the Ward-Takahashi or Slavnov-Taylor identities
satisfied by the quantities involved (e.g., the famousZ1 = Z2 of QED). The Green’s function of
Eq. (9) is definitely not an RG-invariant [17], and thereforepicks up a non-trivial dependence on
µ . Thus, one hasu(q2,µ2), and in particular, in the deep IR limit,u = u(0,µ2).

Now, if the KO confinement criterion (7) were satisfied, the ghost dressing function must
diverge asq2 → 0, due to the BRST identity (10). This will in turn make theµ dependence of the
KO function (which is however still there) irrelevant, since u(q2,µ2) will be then driven to -1 in
the deep IR limit for any value ofµ . On the other hand, lattice simulations tells us that the ghost
dressing function is finite, and it is interesting to determine explicitly theµ-dependence of the KO
function.

Quite remarkably this issue can be thoroughly studied within the modern formulation of the
PT (by means of the Batalin-Vilkoviski quantization formalism [18]) exploiting in particular the
PT correspondence [7, 19] with the background field method (BFM) [20]. Indeed, it turns out
that [15, 17], in the (background) Landau gauge, the Kugo-Ojima function coincides with the
form factor G(q2) multiplying gµν in the Lorentz decomposition of a certain auxiliary function
Λµν(q) which enters in all the so-called “background-quantum” identities [21], i.e., the infinite
tower of non-trivial relations connecting the BFM Green’s functions to the conventional ones (e.g.,
calculated in theRξ gauges). In addition,G(q2) is a key element in the aforementioned new SDEs
that can be truncated in a manifestly gauge invariant way.

Let us recall that in the BV formulation of Yang-Mills theories [18], one starts by introducing
certain sources (called anti-fields in what follows) that describe the renormalization of compos-
ite operators; the latter class of operator is in fact bound to appear in such theories due to the
non-linearity of the BRST transformation of the elementaryfields. In much the same way, the

1The same prediction is obtained when implementing the (original) Gribov-Zwanziger (GZ) horizon condition [16]:
in the IR region the ghost propagator diverges more rapidly than at tree-level. Furthermore, it has been also argued that
the Landau gauge gluon propagator should vanish in the same limit. The prediction for the gluon propagator in the
KO scenario is instead that it is less divergent than the tree-level expression which, evidently, encompasses the IR-finite
gluon propagator as a special case, even though, up until recently, the focus had been placed rather on the “vanishing”
solutions, given that they satisfy simultaneously both theKO and GZ requirements.

5
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+Λµν(q) = νµ µ ν

Hσν(k, q) = H(0)
σν +

k, σ

q − k

q
ν

Figure 2: Diagrammatic representation of the functionsΛ andH.

quantization of the theory in a background field type of gaugerequires, in addition to the afore-
mentioned anti-fields, the introduction of new sources which couple to the BRST variation of the
background fields [21]. These sources are sufficient for implementing the full set of symmetries of
a non-Abelian theory at the quantum level, and in the case of quarklessSU(N) QCD, lead to the
master equation

∫
d4x

[
δΓ

δA∗m
µ

δΓ
δAm

µ
+

δΓ
δcm

δΓ
δ c̄m +Bm δΓ

δ c̄m + Ωm
µ

(
δΓ

δ Âm
µ
−

δΓ
δAm

µ

)]

= 0. (11)

In the formula above,Γ is the effective action,A∗ and c∗ the gluon and ghost anti-fields,̂A is
the gluon background field, andΩ the corresponding background source; finallyB denotes the
Nakanishi-Lautrup multiplier for the gauge fixing condition.

To determine the complete algebraic structure of the theorywe need two additional equations.
The first one is the Faddeev-Popov equation, that controls the result of the contraction of an anti-
field leg with the corresponding momenta. In position space,it reads

δΓ
δ c̄m +

(
D̂

µ δΓ
δA∗

µ

)m

−
(
D

µ Ωµ
)m

= 0, (12)

where(Dµ Φ)m = ∂ µΦm + g fmnrAn
µΦr [in the case of(D̂µ Φ)m replace the gluon fieldA with a

background gluon field̂A]. The second one is the anti-ghost equation formulated in the background
field Landau gauge, which reads [15]

δΓ
δcm −

(
D̂

µ δΓ
δΩµ

)m

−
(
D

µ A∗
µ
)m

− f mnrc∗ncr + f mnr δΓ
δBn c̄r = 0, (13)

This equation fully constrains the dynamics of the ghost field c, and implies that the latter will not
get an independent renormalization constant. The local form of the anti-ghost equation (13) is only
valid when choosing the background Landau gauge condition(D̂µAµ)m = 0; in the usual Landau
gauge,∂ µAm

µ = 0, an integrated version of this equation is available. In fact, even though the results
that follow will be derived for convenience in the background Landau gauge, they are valid also in
the conventional Landau gauge of theRξ .

6
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Now, differentiation of the functional (11) with respect toa combination of fields containing at
least one ghost field or two ghost fields and one anti-field (andsetting the fields and sources to zero
afterwards) will provide the Slavnov-Taylor identities ofthe theory. Differentiation with respect to
a background source and background or quantum fields will provide, instead, the aforementioned
background-quantum identities. Finally, differentiation of (12) and (13) with respect to fields and
anti-fields or background sources give rise to relation among the different auxiliary ghost functions
appearing in the theory.

The important point is that, when carrying out these differentiations, the following function
appears (Fig. 2)

iΛµν(q) = ΓΩµ A∗
ν (q) = g2CA

∫

k
H(0)

µρ D(k+q)∆ρσ (k)Hσν(k,q),

= igµνG(q2)+ i
qµqν

q2 L(q2), (14)

In the equations above, the color factorδ mn has been factored out (as always in what follows),
CA represents the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)], and∫

k ≡ µ2ε(2π)−d ∫ ddk, with d = 4− ε the dimension of space-time. Finally, the functionHµν(k,q)

(see Fig. 2 again) is in fact a familiar object, for it appearsin the all-order Slavnov-Taylor identity
satisfied by the standard three-gluon vertex; it is also related to the full gluon-ghost vertexΓΓΓµ(k,q)

by the identityqνHµν(k,q) = −iΓΓΓµ(k,q) [at tree-level,H(0)
µν = igµν andΓΓΓ(0)

µ (k,q) = −qµ ]. Indeed
one finds the following results

(i) When differentiating the functional (11) with respect to abackground source and a back-
ground gluon, on the one hand, and a background source and a quantum gluon, on the other,
we can combine the resulting equation and trade the resulting two point functions for the
corresponding propagators to get the important background-quantum identity

∆̂−1 =
[
1+G(q2)

]2∆−1(q2). (15)

The quantitŷ∆(q2) appearing on the left-hand side of the above equation captures the running
of the QCDβ function, exactly as it happens with the QED vacuum polarization; for every
value of the (quantum) gauge-fixing parameter one has (at theone loop level)∆−1(q2) =

q2[1+bg2 log(q2/µ2)] whereb = 11CA/48π2. It is the identity (15) that plays a central role
in the derivation of the new set of SDEs that can be truncated in manifestly gauge invariant
way.

(ii ) If we consider the background Landau gauge, differentiating the ghost equation (12) with
respect to a ghost field and a background source, and the anti-ghost equation (13) with respect
to a gluon anti-field and an anti-ghost, we get the relations

Γcc̄(q) = −iqν ΓcA∗
ν (q) Γc̄Ωµ (q) = qµ +qνΛµν(q), (16)

ΓcA∗
ν (q) = qν +qµΛµν(q), Γcc̄(q) = −iqµΓc̄Ωµ (q). (17)

Next, contracting the first equation in (17) withqν , and making use of the first equation
in (16), we see that the dynamics of the ghost sector is entirely captured byΛµν(q), for one

7
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Ωm

µ
Ωm

µA∗m

ν
A∗m

νcrc̄s

+−Gmn

µν
(q) =

Figure 3: Connected components contributing to the functionGmn
µν(q).

has iΓcc̄(q) = q2 + qµqν Λµν(q). Then, introducing the Lorentz decompositionsΓcA∗
µ (q) =

qµC(q2) andΓc̄Ωµ (q) = qµE(q2) we find the identities [15]

C(q2) = E(q2) = F−1(q2), F−1(q2) = 1+G(q2)+L(q2). (18)

Recalling that the dimension of the gluon anti-fieldA∗ is three, while the dimension of the
Ω source is one, power counting shows that all functions appearing in Eqs. (16) and (17)
are divergent, and in particular that the divergent part ofΛµν(q) can be proportional togµν

only [15, 22], so thatL(q2) is ultraviolet finite.

(iii ) In the background Landau gauge the function appearing on the lhs of Eq. (8) is precisely
given by

−G
mn
µν (q) =

δ 2W
δΩm

µ δA∗n
ν

, (19)

whereW is the generator of the connected Green’s functions, and thetwo connected diagrams
contributing toGµν are shown in Fig. 3. Factoring out the color structure and making use of
the identities (18) one has

−iGµν(q) = Λµν(q)+ ΓΩµ c̄(q)D(q2)ΓA∗
ν c(q) = −

qµqν

q2 +Pµν(q)G(q2). (20)

Passing to the Euclidean formulation, and comparing with Eq. (8), we then arrive at the
important equality

u(q2) = G(q2). (21)

Then, the usual KO confinement criterion may be equivalentlycast in the form: 1+G(0) = 0;
moreover we see that the unspecified functionw(q2) appearing in Eq. (10) coincides in fact
with theL(q2) form factor appearing in (14).

We thus see that in the (background) Landau gauge the single functionG(q2) is an extremely
interesting object to study, since its IR behavior determines much of the IR behavior of the theory.
Now, keeping the verticesΓΓΓµ(k,q) andHµν(k,q) at their tree-level values, one finds that the dy-
namical equations forF(q2), G(q2) = u(q2) andL(q2) are completely determined by the gluon and
ghost propagator [22]

F−1(q2) = 1+g2CA

∫

k

[
1−

(k ·q)2

k2q2

]
∆(k)D(k+q),

u(q2) =
g2CA

3

∫

k

[
2+

(k ·q)2

k2q2

]
∆(k)D(k+q),

L(q2) =
g2CA

3

∫

k

[
1−4

(k ·q)2

k2q2

]
∆(k)D(k+q). (22)

8
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Figure 4: Left panel: −u(q2) determined from Eq. (24) at different renormalization points µ = 3.0,3.6,4.3
GeV.Right panel: Same as in the previous panel but this time forL(q2).

Now, as discussed in detail in [22], these (unrenormalized)equations must be properly renor-
malized,i.e., in such a way as to preserve the validity of the BRST identityin (10), which should
not be deformed by the renormalization process. Note in factthat Eq. (10) constrains the cutoff-
dependence of the unrenormalized quantities involved2. Specifically, if we denote byZc the ghost
wave-function renormalization constant, withZcF−1

0 = F−1 and with ZΛ the (yet unspecified)
renormalization constant of the functionΛµν(q), with3 ZΛ[gµν + Λµν

0 ] = gµν + Λµν , one finds
that in order to preserve the identity (10) one has to imposeZΛ = Zc [22]; as a result, one finds the
relation

Zc(Λ2,µ2)[1+u0(q
2,Λ2)+L0(q

2,Λ2)] = 1+u(q2,µ2)+L(q2,µ2). (23)

Imposing then the renormalization conditionF(µ2) = 1, going to Euclidean space, settingq2 =

x, k2 = y andαs = g2/4π, and implementing the standard angular approximation, onefinds the
renormalized equations

F−1(x) = Zc−
αsCA

16π

[
F(x)

x

∫ x

0
dy y

(
3−

y
x

)
∆(y)+

∫ ∞

x
dy

(
3−

x
y

)
∆(y)F(y)

]
,

1+u(x) = Zc−
αsCA

16π

[
F(x)

x

∫ x

0
dy y

(
3+

y
3x

)
∆(y)+

∫ ∞

x
dy

(
3+

x
3y

)
∆(y)F(y)

]
,

L(x) =
αsCA

12π

[
F(x)
x2

∫ x

0
dy y2∆(y)+x

∫ ∞

x
dy

∆(y)F(y)
y

]
. (24)

From this last equation it is easy to see (e.g., by means of the change of variablesy = zx) that if ∆
andF are IR finite, thenL(0) = 0, as mentioned before.

At this point one can substitute into the equations above theavailable lattice data on the gluon
and ghost propagators thus determining in an indirect way the functionsu and L. The results

2It is easy to recognize, for example, by substituting into (22) tree-level expressions, thatF−1(q2) andu(q2) have
the same leading dependence on the ultraviolet cutoffΛ, namelyF−1

UV (q2) = uUV(q2) = 9g2/64π2 log(Λ2/q2), while
L(q2) is finite (independent ofΛ).

3The inclusion of thegµν term is absolutely essential for the self-consistency of the entire renormalization pro-
cedure. To be sure, thegµν term appears naturally, given, for example, the form of the gluon propagator background
quantum identity [17].
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Figure 5: The renormalization-group invariant productd̂(q2) obtained combining the lattice results for the
gluon propagator and our solutions for the functionu(q2) = G(q2) according to Eq. (25)

are shown in Fig. 4, from which we explicitly see theµ-dependence of the KO function and in
particular of the KO parameter, as well as the vanishing in the deep IR of theL(q2) form factor.
Notice that the KO function saturates in the deep IR at the value4 u(0) ∼−0.6.

Now, it is well-known that the productg2∆̂(q2) is a RG-invariant quantity, representing the
non-Abelian generalization of the QED quantitye2∆(q2). Then using Eq. (15) we find that the
product

d̂(q2) =
g2(µ2)∆(q2,µ2)

[1+u(q2,µ2)]2
, (25)

is RG-invariant. But this then shows definitively that (i) the KO function cannot be an RG-invariant
combination since (ii ) its µ dependence must be such that it cancels theµ-dependence of the
numerator, as it is explicitly shown in Fig. 5.

Theµ-dependence of the KO parameter is displayed in the left panel of Fig. 6; the observedµ-
dependence is really sizable when contrasted with the impressive absence of any such dependence
displayed by the genuinely RG-invariant quantity given in Eq. (25) which was computed using
exactly the same sets of lattice data (Fig. 5). On the right panel of the same figure we show finally
a comparison between our indirect determination of the KO function and the direct one obtained
in [24] where the function (9) was studied by means of Monte Carlo averages: evidently the two
curves compare rather well.

Let us finally take a closer look at the background-quantum identity (15); due to the central
equality of Eq. (21), we have that in the Landau gauge

u(q2) =

√
∆(q2)

∆̂(q2)
−1. (26)

4A value for the KO parameter of−2/3 has been in fact predicted in [23] by studying how the presence of the
Gribov horizon affects the KO criterion. However since there is a residual dependence onµ2 of the KO parameter we
consider this a coincidence due to the choice of the renormalization point rather than a fundamental prediction of the
theory.
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Figure 6: Left panel: The dependence of the KO parameteru on the renormalization pointµ ; the red solid
line corresponds to a fit of a phase transition type−u = a(µ2−b)c, with parametersa = 0.633,b = 3.57,
c = 0.025.Right panel: The KO function,−u(q2), obtained from the solution of Eq. (24) (solid black line)
compared to the lattice data of [24] atµ = 4GeV

Interestingly enough, this simple formula expresses the KOfunction in terms of two gluon prop-
agators calculated in the Landau gauge of two very distinct gauge-fixing schemes, with no direct
reference to the ghost sector of the theory. This observation opens up the possibility of deduc-
ing the structure of the KO function using an entirely different, and completely novel, approach.
Specifically, one may envisage a lattice simulation5 of ∆̂; then,u(q2) may be obtained from (26) by
simply forming the ratio of the two gluon propagators. Giventhat∆(0) is found to be finite on the
lattice [1, 2], it is clear that, in order for the standard KO criterion to be satisfied (i.e., u(0) = −1),
∆̂ must diverge in the IR. Needless to say, we consider such a scenario highly unlikely. What is
far more likely to happen, in our opinion, is to find a perfectly finite and well-behaved̂∆, which in
the deep IR will be about an order of magnitude larger than∆(0), furnishing a valueu(0) ∼ −0.6,
namely what we have found in our analysis. In fact, one may turn the argument around: combining
the results of this article with the lattice data for∆ [1, 2], one may use (26) to predict the outcome
of the lattice simulation for̂∆; our prediction for the case ofSU(3) is shown in Fig. 7.
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