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Anomalies and chiral symmetry Michael Creutz

1. Introduction

As is well known to this community, chiral symmetry plays a crucial role in our understanding
of QCD. But, of course, chiral symmetry is broken, and there are three sources of this breaking.
First is the spontaneous breaking giving rise to an expectation value for the chiral condensate;i.e.
〈ψψ〉 6= 0. This is invoked to explain the lightness of pions relativeto other hadrons. Second, we
have the implicit breaking of the flavor-singlet axialU(1) symmetry by the anomaly. This explains
why theη ′ meson is not so light in comparison with the pions. And finallywe have the explicit
breaking of chiral symmetry by the quark masses. This means that the pions, while light, are not
exactly massless. In this talk I will discuss some of the rather rich physics that arises from the
interplay of these three effects.

The breaking of the classicalU(1) axial symmetry is tied to the possibility of introducing into
massive QCD a CP violating parameter, usually calledΘ. For a recent review of this quantity, see
Ref. [1]. One of my goals here is to provide an intuitive and qualitative picture of theΘ parameter
in meson physics. This picture has evolved over many years. The possibility of the spontaneous
CP violation occurring atΘ = π is tied to what is known as Dashen’s phenomenon [2], first noted
even before the days of QCD. In the mid 1970’s, ’t Hooft [3] elucidated the underlying connection
between the chiral anomaly and the topology of gauge fields. Later Witten [4] used large gauge
group ideas to discuss the behavior atΘ = π in terms of effective Lagrangians. Ref. [5] lists a few
of the early studies of the effects ofΘ on effective Lagrangians. The topic continues to appear in
various contexts; for example, Ref. [6] contains a different approach to understanding the transition
at Θ = π in the framework of the two-flavor Nambu Jona-Lasinio model.

I became interested in these issues while trying to understand the difficulties with formulating
chiral symmetry on the lattice. Much of the picture presented here is implicit in my 1995 paper
on quark masses [7]. Since then the topic has become highly controversial, with the realization of
ambiguities precluding a vanishing up quark mass as a solution to the strong CP problem [8] and
the appearance of an inconsistency with one of the popular algorithms in lattice gauge theory [9].
Despite the controversies, both results are immediate consequences of the interplay of the anomaly
and chiral symmetry. The fact that these issues remain so disputed drives me to return to them here.
Portions of this discussion appear in more detail in Ref. [10].

A crucial issue is that the axial anomaly inNf flavor massless QCD leaves behind a residual
ZNf flavor-singlet chiral symmetry. This is closely tied to gauge-field topology and the QCD theta
parameter. As a consequence I will show that, with degenerate quarks carrying a small non-zero
mass, there must appear a first order transition atΘ = π. For two flavors this transition studied in
Refs. [7, 11, 12]. This result in turn has several further consequences. First, the sign of the quark
mass is relevant for an odd number of flavors. This is not seen in perturbation theory, giving a
simple example where perturbation theory does not provide acomplete description of a field theory.
Second, going down to one flavor, chiral symmetry no longer provides an additive protection for
a small fermion mass. And third, the nontrivial dependence on the number of flavors can in some
cases invalidate the rooting prescription often used to extrapolate between different flavor contents
in lattice simulations. It is the latter two points which have been extremely controversial.
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2. Assumptions

For the purposes of this talk I make a few minimal assumptions. Considering QCD with
Nf light quarks, I assume this field theory exists and confines inthe usual way. I assume that
spontaneous chiral symmetry breaking occurs in the massless theory with〈ψψ〉 6= 0. When masses
are considered, I consider that the usual chiral perturbation theory in momenta and masses makes
sense. I also assume that the anomaly gives theη ′ a mass even when the quark masses vanish. I
further considerNf small enough to avoid any possible conformal phases.

I frame the discussion in continuum language, but I imagine some non-perturbative regulator
is in place to control divergences. Of course for me this would be the lattice, but I need not be more
specific here. I assume this regulator has brought us close tothe continuum theory,i.e. any mo-
mentum space cutoff should be much larger thanΛQCD, the natural scale of the strong interactions.
For a lattice approach, the lattice spacinga is considered as much smaller than 1/ΛQCD.

I consider the effective potentialV for various meson fields. This represents the resulting vac-
uum energy density for a given field expectation. Such can be derived formally via a Legendre
transformation in the standard way. Here I will ignore convexity issues associated with the phase
separation that will occur when a field is constrained to be ina naively concave region. A more pre-
cise treatment would be in terms of the phase transitions that occur with global minimum changes.
Instead I proceed with the generally familiar language of symmetry breaking in terms of multiple
minima in the effective potential. For simplicity I concentrate onNf degenerate quarks. To start I
will also takeNf even; this is because of some interesting subtleties with anodd number of flavors
that I will get to later in the talk.

I will be considering a variety of composite fields. Because these are generally singular prod-
ucts of fields at the same space time point, I assume that our unspecified regulator has some way of
handling this. The particular fields I will work with are

σ ∼ ψψ
πα ∼ iψλα γ5ψ

η ′ ∼ iψγ5ψ .

(2.1)

Hereλα represents the generalized Gell-Mann matrices generatingthe flavor groupSU(Nf ).

3. Spontaneous chiral symmetry breaking

Spontaneous breaking of chiral symmetry is a crucial part ofour understanding of the strong
interactions. It is usually discussed in terms of a double well structure for the effective potential
considered as a function of the fieldσ ∼ ψψ . The vacuum selects one of these minima giving
an expectation value to the sigma field,〈σ〉 = v 6= 0. When the mass vanishes it is a convention
whether one takes the positive or the negative minimum.

With multiple flavors the vacuum is continuously degenerate, with the non-singlet pseudo-
scalars being Goldstone bosons. This is associated with a symmetry under flavored chiral rotations
of the quark fields

ψ → eiφγ5λ α/2ψ
ψ → ψeiφγ5λ α /2.

(3.1)

3



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
0
8

Anomalies and chiral symmetry Michael Creutz

V

π

σ

Figure 1: Spontaneous chiral symmetry breaking is represented by a double well effective potential with the
vacuum settling into a non-trivial minimum. Chiral symmetry is broken by the selection of a specific value
for the quark condensate. The flavor non-singlet pseudo-scalar mesons are Goldstone bosons corresponding
to flat directions in the effective potential.

π

σ

V

Figure 2: A small quark mass tilts the effective potential, selectingone direction for the true vacuum and
giving the Goldstone bosons a mass.

There is one such symmetry for each generator of the flavor group SU(Nf ). For example, with two
flavors this symmetry mixes theσ andπ fields

σ → cos(φ)σ +sin(φ)πα ,

πα → cos(φ)πα −sin(φ)σ .
(3.2)

The minimum of the potential hasN2
f −1 “flat” directions. This standard scenario is illustrated in

Fig. 1.
If we now consider a small quark mass, this will select one vacuum as unique. Physically, a

mass term represented byV →V−mσ tilts the effective potential downward in a specific direction,
as illustrated in Fig. 2. In the process the Goldstone bosonsacquire a mass proportional to the
square root of the quark mass.

4. The chiral anomaly

It is the chiral anomaly that gives the flavor-singletη ′ a mass even if the quark mass vanishes.
This mass is of order the scale of the strong interactions,mη ′ = O(ΛQCD), and does not go to zero
when the quark mass does. In terms of the effective potential, V(σ ,η ′) is not symmetric under the
rotation

σ → σ cos(φ)+ η ′ sin(φ)

η ′ → η ′ cos(φ)−σ sin(φ).
(4.1)
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If we expand the effective potential near the vacuum stateσ ∼ v andη ′ ∼ 0 we should expect a
form like

V(σ ,η ′) = m2
σ (σ −v)2 +m2

η ′η ′2 +O((σ −v)3,η ′4) (4.2)

with both masses being of orderΛQCD.
In quark language, the above rotation mixing theσ andη ′ fields is associated with the classical

symmetry of the naive action under

ψ → eiφγ5/2ψ
ψ → ψeiφγ5/2.

(4.3)

This symmetry is “anomalous” in the sense that it must be broken by any valid regulator. Theη ′

mass is a remnant of this breaking that survives as the regulator is removed.
Fujikawa [13] has presented a rather elegant way to see how the anomaly arises. The above

variable change alters the fermion measure

dψ → |e−iφγ5/2|dψ = e−iφTrγ5/2dψ . (4.4)

Now naivelyγ5 is a traceless matrix, and one might conclude that this change in the measure is
harmless. Fujikawa pointed out that this does not apply in the regulated theory. For example one
might define the trace ofγ5 as

lim
Λ→∞

Tr
(

γ5e−D2/Λ2
)

6= 0 (4.5)

whereD is the kinetic part of the Dirac actionψ(D + m)ψ . In the usual continuum analysis this
satisfiesD† = −D and anti-commutes with gamma five,[D,γ5]+ = 0. Thus motivated, we can use
the eigenstates ofD

D|ψi〉 = λi |ψi〉 (4.6)

to define the trace

Trγ5 = ∑
i
〈ψi |γ5|ψi〉. (4.7)

At this point we bring in the index theorem; this states that if the gauge field has non-trivial
winding ν , D will have at leastν zero modesD|ψi〉 = 0. These modes are chiral:γ5|ψi〉 = ±|ψi〉
and the counting is such thatν = n+ −n−. Thus the zero modes contributeν to the trace ofγ5.

Now the non-zero eigenmodes all occur in complex conjugate pairs. If we haveD|ψ〉 =

λ |ψ〉, thenDγ5|ψ〉 = −λγ5|ψ〉 = λ ∗γ5|ψ〉. As D is anti-hermitian,|ψ〉 and|γ5ψ〉 are orthogonal
wheneverλ 6= 0. As a consequence, the space spanned by|ψ〉 and|γ5ψ〉 gives no contribution to
Trγ5. We are led to the remarkable conclusion that only the zero modes count in calculating the
above trace. Thus we have

Trγ5 = ∑
i

〈ψi |γ5|ψi〉 = ν , (4.8)

which does not vanish when the topology is non-trivial.
So where did the opposite chirality states go? In continuum language, they are “lost at infinity”

in the sense that they have been driven “above the cutoff.” Onthe lattice there are no infinities; so
things are a bit more subtle. With the overlap operator [14],all eigenvalues lie on a circle in the
complex plane, and corresponding to every zero mode is a corresponding mode of opposite chirality
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η

?

?

v−v
σ

Figure 3: The circles in this figure inclose the two minima in theσ ,η ′ plane located atσ =±v andη ′ = 0.
Can we find any other minima?

on the opposite side of this circle. This technique brings ina modified chiral matrix through the
relation Dγ5 = −γ̂5D and the winding appears via Tr̂γ5 = 2ν . With Wilson fermions [15] the
low lying approximate zero modes are compensated by additional real eigenvalues in the doubler
region.

Note that this discussion involves both short and long distances. The zero modes associated
with topology are compensated by additional modes lost at the cutoff. This means that it can be
dangerous to assume that one can ignore instanton physics bygoing to short distances. Further-
more it becomes impossible to uniquely separate perturbative and non-perturbative effects; as one
changes, say, the scale of the cutoff, small instantons can “fall through the lattice.” In general this
issue is scheme dependent.

So we conclude that under the transformation of Eq. (4.3), the regulated fermion measure
changes bye−iφTrγ5 = e−iφν . This factor changes the weighting of gauge configurations with non-
zero winding. Note that this introduces a sign problem for Monte Carlo, but that is not the topic
under discussion here.

To end this section, note that the angleφ I have used here is the conventionalΘ/Nf . This
is since I have given each flavor a common phase. Each contributes equally, and the full trace
including flavor space is Trγ5 = Nf ν .

5. A ZNf symmetry

I now return to the earlier effective-potential language. Ihave argued that, because of spon-
taneous chiral symmetry breaking, there are at least two minima in theσ ,η ′ plane, located as
sketched in Fig. 3. Do we know anything about the potential elsewhere in theσ ,η ′ plane? Re-
markably the answer is yes; there are actuallyNf physically equivalent minima in this plane.

At this point it is useful to project out left handed fermion fields

ψL =
1+ γ5

2
ψ . (5.1)

Then, because of the anomaly, a singlet rotation of only the left handed field

ψL → eiφ ψL (5.2)

6
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VV

V

V

η

σ

2

3

1

0

Figure 4: For four flavors, the effective potential has four equivalent minima, marked here with circles, in
theσ ,η ′ plane. This generalizes toNf minima withNf flavors.

is not a good symmetry for genericφ . On the other hand, a flavored rotation

ψL → gLψL = eiφα λα ψL (5.3)

is a symmetry forgL ∈ SU(Nf ). The point I wish to emphasize is that for special discrete elements
these two types of rotation can cross. In particular I can take g in the center ofSU(Nf )

g = e2π i/Nf ∈ ZNf ⊂ SU(Nf ), (5.4)

and we obtain a valid discrete singlet symmetry

σ → σ cos(2π/Nf )+ η ′sin(2π/Nf )

η ′ → η ′ cos(2π/Nf )−σ sin(2π/Nf ).
(5.5)

ThisZNf symmetry applies to the effective potential when the quark mass vanishes. Then there are
Nf equivalent minima in the(σ ,η ′) plane. This is sketched for theNf = 4 case in Fig. 4.

At the chiral Lagrangian level this symmetry arises becauseZN is a subgroup of bothSU(N)

andU(1). At the quark level it can be understood from the fact that the’t Hooft vertex gets a
contribution from each flavor and multiplying together the phasesψL → e2π i/Nf ψL from each gives
a net factor of unity.

6. Including the quark mass

A quark mass term−mψψ ∼ −mσ can be thought of as tilting the effective potential down-
ward in the sigma direction. This picks one vacuum as the lowest. Expanding the potential about the
n’th minimum gives an effective pion mass in the given minimumgoing asm2

π ∼ mcos(2πn/Nf ).
Thusn = 0 is the true vacuum while the highest minima are unstable in theπα direction. Note that
multiple truly meta-stable minima become possible whenNf > 4.

While the conventional mass term is proportional tomψψ , it is interesting to consider a more
general term obtained by an anomalous rotation

mψψ → mcos(φ)ψψ + imsin(φ)ψγ5ψ . (6.1)

7
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VV

V

V

η

σ

2

1

3

0

Θ = π

Figure 5: With massive quarks and a twisting angle ofφ = π/Nf , two of the minima in theσ ,η ′ plane
become degenerate. This corresponds to a first order transition atΘ = π .

This corresponds to tilting the potential downward not in the sigma direction, but in a direction at
an the angleφ in theσ ,η ′ plane. In general this will give an inequivalent theory. Forsmallφ , the
vacuum will remain in the vicinity of the minimum at positiveσ ; however, asφ increases through
π/Nf , vacuum will jump from this minimum to a neighboring one. This is illustrated in Fig. 5.

In this discussion I have given the mass for each flavor a common phaseφ . In more conven-
tional treatments one introduces the sum of these with the definition Θ = Nf φ . TheZNf symmetry
implies a 2π periodicity inΘ. What has been demonstrated here is that with degenerate light quarks
a first order transition is expected atΘ = π.

The underlyingZNf can be thought of as a discrete symmetry in mass parameter space

m→ mexp

(

iπγ5

Nf

)

. (6.2)

In particular forNf = 4 a mass term of formmψψ is physically equivalent to considering one of
form imψγ5ψ . This specific equivalence is only true forNf a multiple of 4.

7. Odd Nf

At this point it should be beginning to be clear why I had restricted myself to evenNf . Now
consider an odd number of flavors,Nf = 2N + 1. The crucial point is that−1 is not an element
of SU(2N + 1). This means thatm > 0 andm < 0 not equivalent! In particular a negative mass
representsΘ = π and will exhibit spontaneous CP violation with〈η ′〉 6= 0. Fig. 6 sketches the
situation forSU(3).

The fact that the sign of the quark mass is relevant for an odd number of flavors is something
not seen in perturbation theory. In any given Feynman diagram, the sign of the mass can be flipped
by a γ5 rotation. Thus positive and negative mass three flavor QCD have identical perturbative
expansions and yet are physically different. This is a simple example of the remarkable fact that
inequivalent theories can have identical perturbative expansions!

A special case of an odd number of flavors is one-flavor QCD. In this situation the anomaly
removes all chiral symmetry and there is a unique minimum in the σ ,η ′ plane, as sketched in
Fig. 7. This minimum does not occur at the origin, being shifted to 〈ψψ〉 > 0 by the ’t Hooft

8



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
0
8

Anomalies and chiral symmetry Michael Creutz

V

η

σ

V

V

N =3

2

1

0

f

Figure 6: For oddNf , such as theSU(3) case sketched here, QCD is not symmetric under changing the
sign of the quark mass. Negative mass corresponds to takingΘ = π .

V0

η

σ

N =1
f

Figure 7: The effective potential for one-flavor QCD with small quark mass has a unique minimum in the
σ ,η ′ plane. The minimum is shifted from zero due to the effect of the ’t Hooft vertex.

vertex, which for one flavor is just an additive mass shift [16]. Unlike the case with more flavors,
this expectation cannot be regarded as a spontaneous symmetry breaking since there is no chiral
symmetry to break. Any regulator that preserves a remnant ofchiral symmetry in the one flavor
theory must inevitably fail [9]. Note also that there is no longer the necessity of a first order phase
transition atΘ = π. It has been argued [17] that for finite quark mass such a transition will occur
if the mass is sufficiently negative, but physics is analyticin m in a finite region around vanishing
mass.

It is important to remember that the details of the instantoneffects are scheme dependent;
this is sometimes called the “renormalon” ambiguity [18]. For the one flavor case this means the
usual polar coordinates(m,Θ) are singular. Indeed, it is more natural to use(Rem, Im m) as our
fundamental parameters. The ambiguity is tied to rough gauge configurations of ill-defined winding
number. Even the overlap operator does not solve this issue since it is not unique, depending on
a parameter often called the “domain wall height.” Because of this, m= 0 for a non-degenerate
quark is an ambiguous concept. In Appendix A I discuss this ambiguity from the point of view of
the renormalization group.

9
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8. When is rooting okay?

Starting with four flavors, can one adjustNf down to one using the formal expression

∣

∣

∣

∣

∣

∣

∣

∣

D+m 0 0 0
0 D+m 0 0
0 0 D+m 0
0 0 0 D+m

∣

∣

∣

∣

∣

∣

∣

∣

1
4

= |D+m|? (8.1)

This has been proposed and is widely used as a method for eliminating the extra species appearing
with staggered fermion simulations.

It is important to emphasize that asking about the viabilityof Eq. 8.1 is a vacuous question
outside the context of a regulator. Field theory has divergences that need to be controlled, and, as
we have seen above, the appearance of anomalies requires care. In particular, the regulated theory
must break all anomalous symmetries.

So we must apply Eq. 8.1 before removing the regulator. This is generally expected to be okay
as long as the regulator breaks any anomalous symmetries appropriately on each of the four factors.
For example, we expect rooting to be valid for four copies of the overlap operator. This satisfies a
modified chiral symmetryDγ5 =−γ̂5D where the gauge windingν appears in the gauge dependent
matrix γ̂ through Tr̂γ5 = 2ν .

But now suppose we try to force theZ4 symmetry in mass parameter space before we root.
This is easily done by considering the determinant

∣

∣

∣

∣

∣

∣

∣

∣

D+me
iπγ5

4 0 0 0
0 D+me

−iπγ5
4 0 0

0 0 D+me
3iπγ5

4 0
0 0 0 D+me

−3iπγ5
4

∣

∣

∣

∣

∣

∣

∣

∣

. (8.2)

This maintains them→ meiπγ5/2 symmetry through a permutation of the four flavors. This still
gives a valid formulation of the four flavor theory at vanishing Θ because the imposed phases
cancel. But expressed in this way, we start with four one-flavor theories with different values of
Θ. Were we to root this form, we would be averaging over four inequivalent theories. This is not
expected to be correct, much as we would not expect rooting two different masses to give a theory
of the average mass;i.e.

(|D+m1||D+m2|)1/2 6= |D+
√

m1m2| . (8.3)

So we have both a correct and an incorrect way to root a four flavor theory down to one.
What is the situation with staggered fermions, the primary place where rooting has been applied?
The problem is that the kinetic term of the staggered action maintains one exact chiral symmetry.
Without rooting this is an allowed symmetry amongst what areusually called “tastes.” Under
this symmetry there are two tastes of each chirality. But, because of this exact symmetry, which
contains aZ4 subgroup, rooting to reduce the theory to one flavor is not expected to be valid. In
particular, rooting does not remove theZ4 discrete symmetry in the mass parameter, a symmetry
which is anomalous in the one flavor theory. Thus, as in the above example, the tastes are not
equivalent and rooting averages inequivalent theories.

10
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The conclusion is that rooted staggered fermions are not QCD. So, what is expected to go
wrong? The unbrokenZ4 symmetry will give rise to extra minima in the effective potential as
a function ofσ andη ′. Forcing these minima would most likely drive theη ′ mass down from
its physical value. This shift should be rather large, of order ΛQCD. This is testable, but being
dominated by disconnected diagrams, may be rather difficultto verify in practice.

9. Summary

We have seen that QCD withNf massless flavors has a discrete flavor-singletZNf chiral sym-
metry. Associated with this is a first order transition atΘ = π whenm 6= 0. As a consequence,
the sign of the mass is significant forNf odd, a property not seen in perturbation theory. Going
down to theNf = 1 case, no chiral symmetry survives, leavingm= 0 unprotected from additive
renormalization. And finally, this structure is inconsistent with rooted staggered quarks due to an
anomalousZ4 symmetry being improperly preserved.

Appendix A: The renormalization group and the quark mass

The ambiguity in defining the mass of a non-degenerate quark can be nicely formulated in the
renormalization group framework [8]. The renormalizationgroup equation for the bare quark mass

a
dm
da

= mγ(g) = m(γ0g2 + γ1g4 + . . .)+non-perturbative (9.1)

can in general contain a non-perturbative part that vanishes faster ing than any power. From the
perturbative part and using the corresponding flow equationfor the bare couplingg, we learn that
the bare quark mass runs to zero logarithmically with the cutoff

m∝ gγ0/β0(1+O(g2)) →a→0 0. (9.2)

whereg is the bare gauge coupling, which, by asymptotic freedom, runs to zero. We can thus define
a renormalized quark mass

mr = lim
a→0

mg−γ0/β0. (9.3)

In general the numerical value ofmr depends on the details of the regularization scheme used.
The anomaly, through the ’t Hooft vertex, contributes a non-perturbative part∼ mNf −1 to the mass
flow. For the case ofNf = 1, this ceases to vanish in the massless limit. Indeed, remembering that

mη ′ ∝
1
a

e−1/2β0g2
g−β1/β2

0 (9.4)

we might expect a similar form to appear in renormalization group equation for the mass. This is
particularly so if theη ′ mass is used as a physical observable defining the renormalization scheme.
Note that this non-perturbative expression formally diverges if we takea to zero without the ap-
propriate simultaneous decrease of the coupling. Allowingsuch a term can give rise to an additive
shift in the renormalized quark mass. As an extreme example,consider a new scheme defined by

ã = a
g̃ = g

m̃= m−mrgγ0/β0 × e−1/2β0g2
g−β1/β2

0

Λa .

(9.5)
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This is crafted so that on the renormalization group trajectory the last factor approaches unity. With
this particular non-perturbative redefinition of parameters we have

m̃r ≡ lim
a→0

m̃g̃−γ0/β0 = mr −mr = 0. (9.6)

Thus in the one flavor theory it is always possible to find a scheme where the renormalized quark
mass vanishes! We conclude thatm= 0 for a non-degenerate quark is an ambiguous concept. Of
course, with degenerate quarksmπ = 0 definesm= 0.
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