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We briefly outline the strategy of divergences removal inNlo& Linear Sigma Model (NLSM),
the Massive Yang-Mills (MYM) theory and th8U(2) ® U(1) Electroweak Model (EW). By
using a new Local Functional Equation (LFE) the subtractibthe divergences is performed
on the basis of a criterion of symmetry, while preservingarnity, locality of counterterms and
predictivity of the models.
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1. Introduction

In power counting renormalizable theories there is a universally acceydoy which to every
independent divergent one-patrticle-irreducible amplitude (1PI) orst associate a parameter in
the tree-level action. This rule cannot be easily exported to any progfranbtraction of infinities
in nonrenormalizable theories. In fact, if this rule is used, the theory Iqasgeneral) any predic-
tivity and moreover the perturbative approach is unstable: for evewydnesrgent 1Pl amplitude
emerging in the perturbative expansion, the whole series have to be difidetethe beginning.
Thus a novel procedure should be devised in order to make finite amaymelizable theory. In
this work we present a very promising strategy.

A common structure is present in the NLSM, in the MYM and in the Higgsless EWemdebr
SU(2) one has the action structures: NLSM (Ref. [1]-[6])

Susm= /\D—“'\i2 / d®xTr{o*0'9,0} (1.1)
the Stickelberg mass for YM (Ref. [7]-[8])
S{MNAD*“MZ/de Tr{ [Au—iQﬁuQTr} (1.2)
and EW (Ref. [9]-[11]) mass terms

Sew ~ /\D4M2/de<Tr { (9A; — %QrgBuQT — iQduQT)z}

/ 2
+§ Tr{oA - %QT3B“QT - 100,05} | ) . (1.3)

The 2x 2 € SU(2) matrix may be parametrized by the real fields

—

Q=@+itnq, @=1/1—¢? (1.4)

The constraint is implemented in the path integral measure
2

-

1-¢?

[12%0x)6(@)3(0(x)*+ & (x) —1) =[] Z7°0(x) (1.5)
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Vertexes carry second power of momenta, therefore already at gpéiexe is an infinite number
of independent divergent amplitudes. Moreover it has been showreigdhenties and in the
eighties that some divergences break (global) chiral invariance aathe srder [12], [13], [14].
This effect seems to be a consequence of the non-trivial measure imttihénegral. Thus we
propose a new strategy [1]: abandon Hamiltonian formalism and do patinmkiheory directly on
the effective action functiondl.

3. The Local Functional Equation (LFE)

The measure is invariant under "local left multiplication" transformati@ns U (w(x))Q

0@y = waz(x) W+ wcz(x) Eabclh- (3.1)

We exploit this invariance and derive a new LFE. The invariance of thie ipgegral functional
under the substitution of the integration variables given by the above ensigiilds a local func-
tional equation, since the parametess(x)) are arbitrary functions.
Technical work to do: (i) find the algebra of operators closed undat left multiplication transfor-
mations by starting from the classical action, (ii) associate to every compgpsitator an external
classical source (for subtraction strategy), (iii) write the LFE which falldsm the invariance of
the path integral measure.

Step (i)
This is simple in the NLSM. For this purpose one introduces a "gauge field"
Fu= %Fa“ —i04,0". (3.2)

Its field strength tensor is zero (it describes a scalar mode) and its tnawagion properties are
those of a gauge field

F, —UFUT+iug,u™. (3.3)
The classical action can be written

2
S\ILSM:/\D_4M4/dDX Tr{FuF“}. (3.4)

Thus the closed set of operatoig, g, ﬁ“}

Ctars i\
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Step (iii)

Now we exploit the invariance of the path integral measure under locahldfiplication @@, =
%(nﬁ #Sabc%)- We expand for small parametéx x) and obtain the LFE((- -) indicates the

mean over the weighted paths)
/dDX< (Ml%(F —\])au(sabcwchu +0H )
_AD74KO%(P&+ %Ka% + gachawc%> (X)> =0,
where
Mg = AP~*M2.
We will use the notation
-@[X}Zb = 6abdu — EabcXep -

Thus for the effective action we get the local functional equation
or or AP 1 or or 1 or
o

—_oH

4. Hierarchy

The Spontaneous Breakdown of Symmetry is imposed by the condition

or

—_— =1
0Ko field &sources=0

Y P — p—
T aboke syt T ROt opoa Bk, B T 270 5

0.

(3.7)

(3.8)

(3.9)

(3.10)

(4.1)

Then the LFE naturally induces a strong hierarchy structure among theddRlcible amplitudes:

all amplitudes involving thep fields (descendant) are known in terms of the amplitudes involving

only the (ancestor) sourceT§, Ko. For instance, if we differentiate the LFE with respectfdy)

we get
2 2 2
M3 o 87T 5°r

27 SHEMBL(y)  SRX)SILY) +20aq0x 6(X—y) = 0.

(4.2)
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wherel is the number of propagatorbl- the number of externdf, sources andNk, those of
Ko. Vik denotes the number of vertexes wWitlp-lines andj derivatives. The superficial degree of
divergenced(G) for a graph can be bounded by using standard arguments. By remofriom

these two equations one gets

5(G)=Dn_—2n — Z(z— j) Vik — Ne — 2N, + 2. (5.2)
J7

The classical action has vertexes wjtk 2, therefore it can be stated that
5(6) < nL(D—2)+2—N|: —2NK0. (5.3)

For instance at. = 1 the only ancestor divergent (independent) amplitude&lard), (J—J—J),
(J—=J-J3-J), (Ko—J—-J), (Ko—Kp). The one-loop divergences of graphs where the descendant

field appears¢) are expressible all in terms of the ancestor divergences.

6. Perturbative Expansion

This is anAnsatz We consider the generic dimensibnand we start with"(©. We read from it
the value of the vertexes and constrleY for n > 0. The connected amplitud#g™ can then be

obtained. Few questions are in order
1. Does (9 obey the LFE? The answer is Yes, by construction.

2. Does ™ n> 0 obey the linearized LFE?

) 5 1 or9% s 1 5
_gH_= u_= Toh—— 4 = = Irm
( O g e Syt a0 s 6Ko+2%5(pa+2£abc(pc5§0o)r

n-1 1 5r sr-i
+ J;2/\041 So oKy (©1)

3. Assume that aymmetricsubtraction procedure is given for the divergences in the limit
D =4, how is the breaking of the above equation?

6.1 Answers
The answers to these questions are given in a compact form by the @uantion Principle
o & AP 5 1 o o
— OH — + Eap ¥ — K K EactKe—=—1Z
( po T Eabole g = 5 Koz + oppaiag, et CcSKb)
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7. Subtraction Strategy

Thus if the counterterms at ordeare missing, the linearized LFE is broken by the term

5 5 1 or@ s
_gh =
( J S o Eaclk 535;' 2A\D—4 3¢, OKq
1 o 1 5 1 ntor® arn-i)
= \rm
Notice that/\Dl4 5% is independent fromMP—4. Thus we use Laurent expansion on
AP (7.2)

to define the finite part and the countertehmP 47 ("W = _A-D+4r (M
poles
The subtraction strategy works in this way: the multiplication/byP+* removes the finite
parts of the Laurent expansion of the non-homogeneous term. Thetet subtraction of only
the pole parts in th& P4 (W removes the non-homogeneous term and therefore the subtracted
amplitude satisfies the linearized LFE. The subtracted poles are insertedir@dsrterms in the
generic D effective action after a change of sign and a restoration éfth&factor.

7.1 Organization of the Divergences

The LFE is a powerful organizer of the divergences that WPC hasifitas The full control can
be obtained by finding the relevant local solutions of the linearized LFE

5 5 1 or® s 1 o6 1 5 -
_gh 2 — 4z — | ™[e,J,, Ko = 0(7.3
( 6J“ + ab()]c J“—i_ 2\D—4 5% 5Ky +2(R)5(pa+ ZgabC%5%> [(pa Mo 0] (x )
Once the local solutions are known, the counterteffiscan be written as linear superposition of
them, where the coefficients are determined by the divergent ancesthiuaes (finite in number
because of the WPC). These local solutions can be easily constructesingythe technique of
bleaching We shortly describe this procedure.

Q The Rlaachinn
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This suggests the bleaching

=" -Fu)Q
_ Ko MZ oy ORy
Ro= @ T(‘]b Fy )M‘Pa (8.2)

8.1 Care in Bleaching

Few facts about bleaching. i) The relations are invertible, ii) In the ca3gobleaching is a kind
of gauge transformation where the parameters are fields

Ju=0'3,Q+i0d,0
33y = Q" (3, +Q0,Q") (I —F)Q = Q7 [F](3, - F)Q (8.3)

iii) the invariants can be constructed by usffjgandfo and their space-time derivatives. Ancestor
amplitudes do not depend explicitly frop We consider only those relevant for the one-loop
divergences.

8.2 The one-loop Invariants

Sy = /dD Dy (F —J) uD” VL
fz_/d X ] [ouF-9)] .
/d xsabc[Du (F-a)] (-3 >2<FCV %),

f4_/dD :er'\i[F“ 5 an,, @)

e fe(2 M) ).
fg:/de<Fa“ Jg) G —Jg) ,

g1 = [P (Rt = ) (R = 38) (Fou =) (Fow = 3w ) (8.4)

P R oY A [ N T . S SR [ S H. S oS SR



Beyond renormalization in B 4: an essay on nonlinear sigma model, massive YM and ElecaioWedel
Ruggero Ferrari

The right hand term is sterile: no descendant terms are generated. iExpidoop calculation
gives [2]

@) :[)1_4&':-[_;[_]flz(jl_jz_js)+4ilé3(j6+2j7>

31 11
+§7f4+* fs] (8.7)

M4 2M2

9. The massive Yang-Mills

In the massive Yang-Mills theor enters in the mass term as in eq. (1.2) and describes the
Goldstone bosons, that are here unphysical modes. Then it is imporamguce that the Slavnov-
Taylor Identity (STI) is valid in order to preserve unitarity. The LFE mustcbenpatible with

the STI. A suitable gauge-fixing term will help to achieve this result. The harghuge is the
simplest, since the tadpole contributions can be neglected in most casesargfertnations to

be considered are the local |8tJ(2),_ and the global righBU(2)r on Q, the gauge field#\,,

the Faddeev-Popov fieldsc. Few external sources are needed in order to describe the complete
(under theSU(2). ® SU(2)R) set of composite operators.

9.1 Landau Gauge-fixing

/\D—4 _
rO—su+ 7 /de (Ba(D“[V](A“ _Vu))a_ca(D“[V]D“[A]C)a)
+/de (A;usAQJr(R’;Sfer @ SPa + CoSC + Koqb>. (9.1)
/\(D_4) 1 v M2
SiM= " /dDX ( = 2 Gauv [AIGE" (A + =~ (Aau — Fa)?). 9.2)
Q=L wting), @@=V (0.3)

wherev is a parameter with dimension equal one. We stressitisatot a parameter of the model
because it can can be removed by a rescaling of the figlgts

9.2 STI
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10. MYM: the Local Functional Equation

The procedure outlined for the NLSM can be repeated here for the MYiglgenerating functional
for the Green functions is given by a path integral which is invariant fdrange of the integration
variables undelocalleft multiplication transformations. Thus one obtains a LFE

5T 5T 5T
W) = / d xaa(x)< g+ EanVu gy~ g

o) 1 1or or
+E&abcAcp A5Abu +5achc578b + EKO%_FETK()@

1 or or or

+ 53abc¢’cm + 5abcCc57C—b + Eabccca

e or . CC*5r+1qg or
b SAF bete s T 5 k
FUHsA T8 270 0y

1 sr 1 *5r>:o 10.1)

TR sg 2%y
I" also obeys the Landau gauge equation

o pos
oBa &

DHV](AL —Via- (10.2)

11. Linearized Equations and Induced Transformations

The structure of both STI and LFE is standard. Thus we can
1. Establish the full hierarchy (only the Goldstone bosons are desutfields)
2. Confirm the validity of the WPC
3. Introduce the linearized STl and LFE

4. Extract fromthe linearized STl and LFE the generators of the tremsfitons on the effective
actionl’

5. Check that the generators stemming from STI commute with those from LFE
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13. Example of the Subtraction Procedure

In Ref. [8] we provided an explicit evaluation of the one-loop self-gpeamplitude. We found
that

1) The counterterms are local at the one-loop level.

2) The physical unitarity is valid.

The two-loop self-energy amplitudes have been considered from thegdoiirew of the consis-
tency. It has been argued that the subtraction scheme is consistent: autiterterms are local ii)
physical unitarity is satisfied iii) the STl and LFE induced symmetry as preserved.

14. Conclusions

The LFE for the NLSM, MYM and EW provides a strong tool to organize tivergences of the
Feynman amplitudes and moreover hints for a consistent (i.e. symmetric ahdskoategy for
removing all the infinities. The steps in this procedure are

e Hierarchy
e WPC
e Minimal dimensional subtraction.
e Finite number of physical parameters
Moreover for massive YM, STl and Landau gauge equation guarantee
e Physical unitarity
e Consistency with LFE.

't Hooft-Feynman gauge is possible (many tadpole diagrams).

15. Outlook and (some) open questions

The fiittire enaacement will be on
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A. NOTE 1: LFE = Schwinger-Dyson equation?

The Schwinger-Dyson equation in presence of a non trivial path idteggasure is

0:/|_|@[(Z)(z)]6(£(X)eiSNLSMexpi/dDy +i|ogqb(y)] (A1)
le.
OSuLsm . @\
< 5 _|§0§> =0. (A.2)
Finally one gets
M3, 1 0N
< ﬁ(_iduFa“ + Eapd @B @:) _|‘R§> =0. (A.3)
——

The under-braced terms are not present in the LFE. Moreover thalldeetor 1/ ¢ is also absent
in the LFE. In fact the Schwinger-Dyson equation might coincide with the &Rl for trivial path
integral measure (i.e. invariant under shift of the fieddg = a, € R) [15].

B. NOTE 2: LFE induced transformations

One can formally introduce external currents by using the Legendrsforam

o

0 K
Ka= 5%|' 5 S+A qb(pa, S =T"|ke=0 (B.1)

Under the action

5 1 or@ s
_ D 1M
50:./0' X[<d““’a_£al'Ji “”)53;{ R T

+ (%%qb + %gajkq)j (H() ;pj

(B.2)

we get
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and

1 or® s 1
Ko = Ko = — == wKa. B.4
&) 0 2/\D_4a)a 6(pa 5K0 0 2/\D_4a)a a ( )

Thus we get a bleached variable

1

ﬁO_KO%'f_/\D 4K(pa
Ko 1 d . Ko M2 _,  _, 0FRy
= %_W%@S"_ %+T(Fb —Jb)ﬂqod (B.5)

C. NOTE 3: The Rosetta Stone

We write the mapping for the paper [2] and the present work notation {elety a hat )

P . . A g
M=mP2 =2 a=9 g By=gf, Acm > =g Ju,=-4313, (C1
p=m" =, ¢ ﬁb’('q mD(ﬂa ay = Jrhap, m, N 9, Jau sz bw (C.1)
With these mappings we get
A=FI, =0 I=0I I4= :%fm
R m2 . -
fszgzﬁfsa Io=0"7%, S=0'7 (C.2)
Finally we get the counterterms
. 1 1 ¢ m
@ — i -D A
D—4[ 12 (4m)2 mZ(jl 72=9%)
1 ¢*mj 1 3 ¢ 1 1¢
+(4n)2Z8W(f6+2‘ﬂ)+(4n)22mZm2‘ﬂ +(4n)2§ﬁj5]
1 1 1

TP

(4m)?
1 1md/ . - 1 3¢'mg > 1 1¢’mp -
+(4n)2I8W(j6+2f)+(4n)22 e 4T e ne |
1 AP4r 1 . 1 31 . 11 -
:D—4(4n)2[ 1—2(%1—%2—%3) 48(j6+2j7)2M4j4 EW%} €3



Beyond renormalization in B 4: an essay on nonlinear sigma model, massive YM and ElecaioWedel
Ruggero Ferrari

[7]
(8]
9]

[10]
[11]
[12]

[13]
[14]
[15]

[16]

D. Bettinelli, R. Ferrari and A. Quadri, Phys. Rev.7mJ (2008) 045021 [arXiv:0705.2339 [hep-th]].
D. Bettinelli, R. Ferrari and A. Quadri, Phys. Rev.713 (2008) 105012 [arXiv:0709.0644 [hep-th]].

D. Bettinelli, R. Ferrari and A. Quadri, Int. J. Mod. Phys 24 (2009) 2639 [arXiv:0807.3882
[hep-ph]].

D. Bettinelli, R. Ferrari and A. Quadri, arXiv:0809.949 [hep-th].

D. Bettinelli, R. Ferrari and A. Quadri, Phys. Rev.7B, 125028 (2009) [arXiv:0903.0281 [hep-th]].

A. Salam and J. Strathdee, Phys. Re2,2869 (1970).

D. G. Boulware, Ann. Phys. (N.Y56, 140 (1970).

J. M. Charap, Phys. Rev. B 1554 (1970).

J. M. Charap, Phys. Rev. 8 1998 (1971).

J. Honerkamp, Nucl. Phys. 85, 130 (1972).

J. Honerkamp and K. Meetz, Phys. Rev3[1996 (1971).

I. S. Gerstein, R. Jackiw, S. Weinberg and B. W. Lee, Phys. B&y 2486 (1971).

L. Tataru, Phys. Rev. D2, 3351 (1975).
T. Appelquist and C. W. Bernard, Phys. Rev2B) 425 (1981).

R. Ferrari, “On the Renormalization of the Complex &c&iree Field Theory,” arXiv:0907.0426
[hep-th].

D. Bettinelli, R. Ferrari and A. Quadri, “The ElectroaleModel based on the Nonlinearly Realized
Gauge Group,” In Proceedings of the International Workstho@CD Green Functions, Confinement
and Phenomenology. September 7-11 , 2009, - EQEnto, Italy. Eds. John M. Cornwall, Arlene C.
Aguilar, Daniele Binosi and Joannis Papavassiliou.



