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We briefly outline the strategy of divergences removal in theNon Linear Sigma Model (NLSM),

the Massive Yang-Mills (MYM) theory and theSU(2)⊗U(1) Electroweak Model (EW). By

using a new Local Functional Equation (LFE) the subtractionof the divergences is performed

on the basis of a criterion of symmetry, while preserving unitarity, locality of counterterms and

predictivity of the models.
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1. Introduction

In power counting renormalizable theories there is a universally acceptedrule, by which to every
independent divergent one-particle-irreducible amplitude (1PI) one must associate a parameter in
the tree-level action. This rule cannot be easily exported to any programof subtraction of infinities
in nonrenormalizable theories. In fact, if this rule is used, the theory looses(in general) any predic-
tivity and moreover the perturbative approach is unstable: for every new divergent 1PI amplitude
emerging in the perturbative expansion, the whole series have to be updated from the beginning.
Thus a novel procedure should be devised in order to make finite a nonrenormalizable theory. In
this work we present a very promising strategy.
A common structure is present in the NLSM, in the MYM and in the Higgsless EW model. For
SU(2) one has the action structures: NLSM (Ref. [1]-[6])

SNLSM= ΛD−4M2

4

∫

dDx Tr
{

∂ µΩ†∂µΩ
}

(1.1)

the Stückelberg mass for YM (Ref. [7]-[8])

SYM ∼ ΛD−4M2
∫

dDx Tr

{
[

Aµ − iΩ∂µΩ†
]2
}

(1.2)

and EW (Ref. [9]-[11]) mass terms

SEW ∼ ΛD−4M2
∫

dDx

(

Tr

{
(
gAµ −

g′

2
Ωτ3BµΩ†− iΩ∂µΩ†)2

}

+
κ
2

[

Tr
{

gAµ −
g′

2
Ωτ3BµΩ†− iΩ∂µΩ†τ3

}]2
)

. (1.3)

The 2×2∈ SU(2) matrix may be parametrized by the real fields

Ω = φ0 + iτiφi , φ0 =

√

1−~φ2. (1.4)

The constraint is implemented in the path integral measure

∏
x

D
4φ(x)θ(φ0)δ (~φ(x)2 +φ2

0(x)−1) = ∏
x

D
3φ(x)

2
√

1−~φ2
. (1.5)
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Vertexes carry second power of momenta, therefore already at one loop there is an infinite number
of independent divergent amplitudes. Moreover it has been shown in the seventies and in the
eighties that some divergences break (global) chiral invariance at the same order [12], [13], [14].
This effect seems to be a consequence of the non-trivial measure in the path integral. Thus we
propose a new strategy [1]: abandon Hamiltonian formalism and do perturbation theory directly on
the effective action functionalΓ.

3. The Local Functional Equation (LFE)

The measure is invariant under "local left multiplication" transformationsΩ →U(ω(x))Ω

δφ0 = −
ωa(x)

2
φa

δφa =
ωa(x)

2
φ0 +

ωc(x)
2

εabcφb. (3.1)

We exploit this invariance and derive a new LFE. The invariance of the path integral functional
under the substitution of the integration variables given by the above equations yields a local func-
tional equation, since the parameters (ωa(x)) are arbitrary functions.
Technical work to do: (i) find the algebra of operators closed under local left multiplication transfor-
mations by starting from the classical action, (ii) associate to every composite operator an external
classical source (for subtraction strategy), (iii) write the LFE which follows from the invariance of
the path integral measure.
Step (i)
This is simple in the NLSM. For this purpose one introduces a "gauge field"

Fµ =
τa

2
Faµ ≡ iΩ∂µΩ†. (3.2)

Its field strength tensor is zero (it describes a scalar mode) and its transformation properties are
those of a gauge field

Fµ →UFµU† + iU ∂µU†. (3.3)

The classical action can be written

SNLSM = ΛD−4M2

4

∫

dDx Tr
{

FµFµ
}

. (3.4)

Thus the closed set of operator is{~φ ,φ0,~Fµ}

Step (ii)
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Step (iii)
Now we exploit the invariance of the path integral measure under local leftmultiplication (δφa =
ωa(x)

2 φ0+ ωc(x)
2 εabcφb). We expand for small parameter~ω(x) and obtain the LFE (〈· · ·〉 indicates the

mean over the weighted paths )
∫

dDx
〈(

M2
D(F −J)aµ(εabcωcF

µ
b +∂ µωa)

−ΛD−4K0
ωa

2
φa +φ0Ka

ωa

2
+ εabcKaωcφb

)

(x)
〉

= 0, (3.7)

where

M2
D ≡ ΛD−4M2. (3.8)

We will use the notation

D [X]
µ
ab = δab∂µ − εabcXcµ . (3.9)

Thus for the effective action we get the local functional equation

−∂ µ δΓ
δJµ

a
+ εabcJ

µ
c

δΓ
δJµ

b

+
ΛD−4

2
φaK0+

1
2ΛD−4

δΓ
δK0

δΓ
δφa

+
1
2

εabcφc
δΓ
δφb

= 0. (3.10)

4. Hierarchy

The Spontaneous Breakdown of Symmetry is imposed by the condition

δΓ
δK0

∣
∣
∣
∣
field &sources=0

= 1. (4.1)

Then the LFE naturally induces a strong hierarchy structure among the 1PIirreducible amplitudes:
all amplitudes involving the~φ fields (descendant) are known in terms of the amplitudes involving
only the (ancestor) sources~Jµ ,K0. For instance, if we differentiate the LFE with respect toJν

a′(y)
we get

M2
D

2
∂ µ δ 2Γ

δJµ
a (x)δJν

a′(y)
+

δ 2Γ
δφa(x)δJν

a′(y)
+2δaa′∂xν δ (x−y) = 0. (4.2)
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whereI is the number of propagators,NF the number of externalFµ sources andNK0 those of
K0. Vjk denotes the number of vertexes withk φ -lines andj derivatives. The superficial degree of
divergenceδ (G) for a graph can be bounded by using standard arguments. By removingI from
these two equations one gets

δ (G) = D nL −2nL −∑
j,k

(2− j) Vjk −NF −2NK0 +2. (5.2)

The classical action has vertexes withj ≤ 2, therefore it can be stated that

δ (G) ≤ nL(D−2)+2−NF −2NK0. (5.3)

For instance atnL = 1 the only ancestor divergent (independent) amplitudes are(J−J), (J−J−J),
(J−J−J−J), (K0−J−J), (K0−K0). The one-loop divergences of graphs where the descendant
field appears (~φ ) are expressible all in terms of the ancestor divergences.

6. Perturbative Expansion

This is anAnsatz. We consider the generic dimensionD and we start withΓ(0). We read from it
the value of the vertexes and constructΓ(n) for n > 0. The connected amplitudesW(n) can then be
obtained. Few questions are in order

1. DoesΓ(0) obey the LFE? The answer is Yes, by construction.

2. DoesΓ(n), n > 0 obey the linearized LFE?
(

−∂ µ δ
δJµ

a
+ εabcJ

µ
c

δ
δJµ

b

+
1

2ΛD−4

δΓ(0)

δφa

δ
δK0

+
1
2

φ0
δ

δφa
+

1
2

εabcφc
δ

δφb

)

Γ(n)

+
n−1

∑
j=1

1
2ΛD−4

δΓ( j)

δφa

δΓ(n− j)

δK0
= 0. (6.1)

3. Assume that asymmetricsubtraction procedure is given for the divergences in the limit
D = 4, how is the breaking of the above equation?

6.1 Answers

The answers to these questions are given in a compact form by the Quantum Action Principle
(

−∂ µ δ
δJµ

a
+ εabcJ

µ
c

δ
δJµ

b

−
ΛD−4

2
K0

δ
δKa

+
1

2ΛD−4Ka
δ

δK0
+ εacbKc

δ
δKb

)

Z

[
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7. Subtraction Strategy

Thus if the counterterms at ordern are missing, the linearized LFE is broken by the term
(

−∂ µ δ
δJµ

a
+ εabcJ

µ
c

δ
δJµ

b

+
1

2ΛD−4

δΓ(0)

δφa

δ
δK0

+
1
2

φ0
δ

δφa
+

1
2

εabcφc
δ

δφb

)

Γ(n) = −
1

2ΛD−4

n−1

∑
j=1

δ Γ̂( j)

δK0

δ Γ̂(n− j)

δφa
. (7.1)

Notice that 1
ΛD−4

δΓ(0)

δφa
is independent fromΛD−4. Thus we use Laurent expansion on

Λ−D+4Γ(n) (7.2)

to define the finite part and the countertermΛ−D+4Γ̂(n) = −Λ−D+4Γ(n)

∣
∣
∣
∣
∣
poles

.

The subtraction strategy works in this way: the multiplication byΛ−D+4 removes the finite
parts of the Laurent expansion of the non-homogeneous term. Therefore the subtraction of only
the pole parts in theΛ−D+4Γ(n) removes the non-homogeneous term and therefore the subtracted
amplitude satisfies the linearized LFE. The subtracted poles are inserted as counterterms in the
generic D effective action after a change of sign and a restoration of theΛD−4 factor.

7.1 Organization of the Divergences

The LFE is a powerful organizer of the divergences that WPC has classified. The full control can
be obtained by finding the relevant local solutions of the linearized LFE
(

−∂ µ δ
δJµ

a
+ εabcJ

µ
c

δ
δJµ

b

+
1

2ΛD−4

δΓ(0)

δφa

δ
δK0

+
1
2

φ0
δ

δφa
+

1
2

εabcφc
δ

δφb

)

Γ(n)[~φ , ~Jµ ,K0] = 0.(7.3)

Once the local solutions are known, the countertermsΓ̂(n) can be written as linear superposition of
them, where the coefficients are determined by the divergent ancestor amplitudes (finite in number
because of the WPC). These local solutions can be easily constructed byusing the technique of
bleaching. We shortly describe this procedure.

8. The Bleaching



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
1
3

Beyond renormalization in D= 4: an essay on nonlinear sigma model, massive YM and Electroweak Model
Ruggero Ferrari

This suggests the bleaching

Jµ ≡ Ω†(Jµ −Fµ)Ω

K0 ≡
K0

φ0
−

M2

4
(Jµ

b −Fµ
b )

∂Fbµ

∂φa
φa (8.2)

8.1 Care in Bleaching

Few facts about bleaching. i) The relations are invertible, ii) In the case ofJaµ , bleaching is a kind
of gauge transformation where the parameters are the~φ fields

Jµ = Ω†JµΩ+ iΩ∂µΩ

∂µJν = Ω†(∂µ +Ω∂µΩ†)(Jν −Fν)Ω = Ω†
Dµ [F](Jν −Fν)Ω (8.3)

iii) the invariants can be constructed by usingJµ andK0 and their space-time derivatives. Ancestor
amplitudes do not depend explicitly from~φ . We consider only those relevant for the one-loop
divergences.

8.2 The one-loop Invariants

I1 =
∫

dDx
[

Dµ(F −J)ν

]

a

[

Dµ(F −J)ν
]

a
,

I2 =
∫

dDx
[

Dµ(F −J)µ
]

a

[

Dν(F −J)ν
]

a
,

I3 =
∫

dDxεabc

[

Dµ(F −J)ν

]

a

(

Fµ
b −Jµ

b

)(

Fν
c −Jν

c

)

,

I4 =
∫

dDx
(K0

φ0
+

M2

4
[Fµ

b −Jµ
b ]

∂Fbµ

∂φa
φa

)2
,

I5 =
∫

dDx
(K0

φ0
+

M2

4
[Fµ

b −Jµ
b ]

∂Fbµ

∂φa
φa

)(

Fµ
c −Jµ

c

)2
,

I6 =
∫

dDx
(

Fµ
a −Jµ

a

)2(

Fν
b −Jν

b

)2
,

I7 =
∫

dDx
(

Fµ
a −Jµ

a

)(

Fν
a −Jν

a

)(

Fbµ −Jbµ

)(

Fbν −Jbν

)

, (8.4)

whereDµ denotes the covariant derivative w.r.tFaµ :
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The right hand term is sterile: no descendant terms are generated. Explicit one-loop calculation
gives [2]

Γ(1) =
1

D−4
ΛD−4

(4π)2

[

−
1
12

(

I1−I2−I3

)

+
1
48

(

I6 +2I7

)

+
3
2

1
M4I4 +

1
2

1
M2I5

]

. (8.7)

9. The massive Yang-Mills

In the massive Yang-Mills theoryΩ enters in the mass term as in eq. (1.2) and describes the
Goldstone bosons, that are here unphysical modes. Then it is important toensure that the Slavnov-
Taylor Identity (STI) is valid in order to preserve unitarity. The LFE must becompatible with
the STI. A suitable gauge-fixing term will help to achieve this result. The Landau gauge is the
simplest, since the tadpole contributions can be neglected in most cases. The transformations to
be considered are the local leftSU(2)L and the global rightSU(2)R on Ω, the gauge fieldsAµ ,
the Faddeev-Popov fieldsc, c̄. Few external sources are needed in order to describe the complete
(under theSU(2)L ⊗SU(2)R) set of composite operators.

9.1 Landau Gauge-fixing

Γ(0) = SYM+
ΛD−4

g2

∫

dDx
(

Ba(D
µ [V](Aµ −Vµ))a− c̄a(D

µ [V]Dµ [A]c)a

)

+
∫

dDx
(

A∗
aµsAµ

a +φ ∗
0sφ0 +φ ∗

asφa +c∗asca +K0φ0

)

. (9.1)

SYM =
Λ(D−4)

g2

∫

dDx
(

−
1
4

Gaµν [A]Gµν
a [A]+

M2

2
(Aaµ −Faµ)2

)

. (9.2)

Ω =
1
v
(φ0 + iτaφa), φ2

0 +φ2
a = v2 (9.3)

wherev is a parameter with dimension equal one. We stress thatv is not a parameter of the model,
because it can can be removed by a rescaling of the fields~φ ,φ0.

9.2 STI
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10. MYM: the Local Functional Equation

The procedure outlined for the NLSM can be repeated here for the MYM.The generating functional
for the Green functions is given by a path integral which is invariant for achange of the integration
variables underlocal left multiplication transformations. Thus one obtains a LFE

W (Γ) ≡
∫

dDxαL
a (x)

(

−∂µ
δΓ

δVaµ
+ εabcVcµ

δΓ
δVbµ

−∂µ
δΓ

δAaµ

+εabcAcµ
δΓ

δAbµ
+ εabcBc

δΓ
δBb

+
1
2

K0φa+
1
2

δΓ
δK0

δΓ
δφa

+
1
2

εabcφc
δΓ
δφb

+ εabcc̄c
δΓ
δ c̄b

+ εabccc
δΓ
δcb

+εabcA
∗
cµ

δΓ
δA∗

bµ
+ εabcc

∗
c

δΓ
δc∗b

+
1
2

φ ∗
0

δΓ
δφ ∗

a

+
1
2

εabcφ ∗
c

δΓ
δφ ∗

b

−
1
2

φ ∗
a

δΓ
δφ ∗

0

)

= 0. (10.1)

Γ also obeys the Landau gauge equation

δΓ
δBa

=
ΛD−4

g2 Dµ [V](Aµ −Vµ)a. (10.2)

11. Linearized Equations and Induced Transformations

The structure of both STI and LFE is standard. Thus we can

1. Establish the full hierarchy (only the Goldstone bosons are descendant fields)

2. Confirm the validity of the WPC

3. Introduce the linearized STI and LFE

4. Extract from the linearized STI and LFE the generators of the transformations on the effective
actionΓ

5. Check that the generators stemming from STI commute with those from LFE
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13. Example of the Subtraction Procedure

In Ref. [8] we provided an explicit evaluation of the one-loop self-energy amplitude. We found
that

1) The counterterms are local at the one-loop level.

2) The physical unitarity is valid.

The two-loop self-energy amplitudes have been considered from the point of view of the consis-
tency. It has been argued that the subtraction scheme is consistent: i) the counterterms are local ii)
physical unitarity is satisfied iii) the STI and LFE induced symmetry onΓ is preserved.

14. Conclusions

The LFE for the NLSM, MYM and EW provides a strong tool to organize the divergences of the
Feynman amplitudes and moreover hints for a consistent (i.e. symmetric and local) strategy for
removing all the infinities. The steps in this procedure are

• Hierarchy

• WPC

• Minimal dimensional subtraction.

• Finite number of physical parameters

Moreover for massive YM, STI and Landau gauge equation guarantee

• Physical unitarity

• Consistency with LFE.

’t Hooft-Feynman gauge is possible (many tadpole diagrams).

15. Outlook and (some) open questions

The future engagement will be on
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A. NOTE 1: LFE = Schwinger-Dyson equation?

The Schwinger-Dyson equation in presence of a non trivial path integral measure is

0 =
∫

∏
z

D [~φ(z)]
δ

δφa(x)
eiSNLSMexpi

∫

dDy

[

+i logφ0(y)

]

(A.1)

i.e.
〈

δSNLSM

δφa(x)
−i

φa

φ2
0

〉

= 0. (A.2)

Finally one gets

〈

M2
D

φ0
(−

1
2

∂ µFaµ + εabc�φbφc
︸ ︷︷ ︸

)−i
φa

φ2
0

︸ ︷︷ ︸

〉

= 0. (A.3)

The under-braced terms are not present in the LFE. Moreover the overall factor 1/φ0 is also absent
in the LFE. In fact the Schwinger-Dyson equation might coincide with the LFEonly for trivial path
integral measure (i.e. invariant under shift of the fieldsδφa = αa ∈ R) [15].

B. NOTE 2: LFE induced transformations

One can formally introduce external currents by using the Legendre transform

Ka ≡−
δ

δφa
Γ(0) = −

δ
δφa

S0 +ΛD−4K0

φ0
φa, S0 ≡ Γ(0)|K0=0 (B.1)

Under the action

δ0 ≡
∫

dDx
[(

∂ µωa− εa jiJ
µ
i ω j

) δ
δJµ

a
+

1
2ΛD−4 ωa

δΓ(0)

δφa

δ
δK0

+
(1

2
ωaφ0 +

1
2

εa jkφ jωk

) δ
δφa

]

(B.2)

we get

δ D 4 K0
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and

δ0 K0 =
1

2ΛD−4 ωa
δΓ(0)

δφa

δ
δK0

K0 = −
1

2ΛD−4ωaKa. (B.4)

Thus we get a bleached variable

K0 = K0φ0 +
1

ΛD−4Kaφa

=
K0

φ0
−

1
ΛD−4 φa

δ
δφa

S0 =
K0

φ0
+

M2

4
(Fµ

b −Jµ
b )

∂Fbµ

∂φa
φa (B.5)

C. NOTE 3: The Rosetta Stone

We write the mapping for the paper [2] and the present work notation (denoted by a hat )

m2
D = mD−2, φ̂0 =

φ0

mD
, φ̂i =

g
mD

φi , F̂aµ = gFaµ , Λ̂ = m,
Λ̂
M̂

= g, Ĵaµ = −4
g

m2
D

Jaµ (C.1)

With these mappings we get

Î1 = g2
I1, Î2 = g2

I2, Î3 = g3
I3, Î4 =

m4
D

m4 I4,

Î5 = g2m2
D

m2 I5, Î6 = g4
I6, Î7 = g4

I7 (C.2)

Finally we get the counterterms

Γ̂(1) =
1

D−4

[

−
1
12

g2

(4π)2

m2
D

m2

(

I1−I2−gI3

)

+
1

(4π)2

g4

48
m2

D

m2

(

I6 +2I7

)

+
1

(4π)2

3
2

g4

m2m2
D

I4 +
1

(4π)2

1
2

g4

m2I5

]

=
1

D−4

[

−
1
12

1
(4π)2

m2
D

m2

(

Î1− Î2− Î3

)

+
1

(4π)2

1
48

m2
D

m2

(

Î6 +2Î7

)

+
1

(4π)2

3
2

g4m2
D

m6 Î4 +
1

(4π)2

1
2

g2m2
D

m4 Î5

]

=
1

D−4
ΛD−4

(4π)2

[

−
1
12

(

Î1− Î2− Î3

)

+
1
48

(

Î6 +2Î7

)3
2

1
M4Î4 +

1
2

1
M2Î5

]

(C.3)
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