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Two Color Matter Simon Hands

In this talk I will review recent results obtained via lattice simulations of Two Color QCD
(QC2D), that is, QCD in which the gauge group is SU(2) rather than SU(3), in the presence of a
non-vanishing quark chemical potential. The goal of this project is to gain non-perturbative in-
sight into cold, dense baryonic matter, ie. the region of the(T,µ) plane conventionally placed
at the lower right of the QCD phase diagram. This is a region oftremendous importance for the
understanding of the interiors of compact astrophysical objects such as neutron stars; it has been
the focus of intense theoretical interest in recent years, with the discussion of possible exotic color
superconducting phases, in which color-carrying degrees of freedom such as quarks or gluons are
all gapped via a Higgs-Meissner mechanism, and which may also be superfluid or even crystalline.
However even basic questions, such as the maximum stable mass of a neutron star, require quantita-
tive input about the equation of state of ultradense matter which needs a controlled non-perturbative
calculation.

The most reliable source of such information, lattice QCD, is in general inoperable in this
regime for the following reason. In Euclidean metric the QCDLagrangian reads

LQCD = ψ̄(M +m)ψ +
1
4

FµνFµν , with M(µ) = D/ [A]+ µγ0. (1)

It is straightforward to showγ5M(µ)γ5 ≡ M†(−µ), implying detM(µ) = (detM(−µ))∗. This im-
plies that the path integral measure is not real and positivefor µ 6= 0, the fundamental reason being
traced to the explicit breaking of symmetry under time reversal. Therefore Monte Carlo impor-
tance sampling, the mainstay of numerical lattice QCD, is ineffective. It is helpful to ask what goes
wrong if the real positive measure factor detM†M, eg. as implemented in the hybrid Monte Carlo
(HMC) algorithm, is used. It turns out that in QCD, whileM describes a color triplet of quark fields
q, theM† factor describes a color antitriplet “conjugate quarks”qc. Gauge singlet bound states of
the formqqc resemble mesons, but carry non-zero baryon chargeB > 0. The lightest such state
is degenerate with the pseudo-Goldstoneπ-meson; hence HMC simulations withµ 6= 0 predict an
unphysical “onset” transition from the vacuum to a state with quark densitynq > 0 at µo ≃ 1

2mπ .
The resulting ground state is a Bose-Einstein condensate (BEC) of diquark baryons, and bears
no resemblance to nuclear matter, which phenomenologically we know forms atµo ≈ 1

Nc
mnucleon.

The physical transition can only be found if the correct complex path integral measure det2M is
used, and must result from extremely non-trivial cancellations between configurations with differ-
ing phases – this has come to be known as theSilver Blazeproblem [1].

In QC2D this is not a bug, but a feature. Becauseq and q̄ live in equivalent representations
of the color group, it is possible to show that detM is real and therefore the theory has a positive
measure forNf even [2]. Physically this is expressed through the presenceof both qq̄ mesons
andqq, q̄q̄ baryons in the same hadron multiplets. For light quarks the scale hierarchymπ ≪ mρ

permits the use of chiral perturbation theory (χPT) in studying the response of the lightest multiplet
to µ 6= 0 [3]. The key result is that forµ ≥ µo ≡ 1

2mπ a non-zero baryon charge densitynq > 0
does develop, along with a gauge-invariant superfluid orderparameter which forNf = 2 reads
〈qq〉 ∼ 〈ψ trCγ5τ2εabψ〉 6= 0, whereτ2 acts on color indices andεab = −εba on flavor. The resulting
system is a BEC composed of weakly interactingqq baryons withJP = 0+.
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Quantitatively, forµ ≥ µo χPT predicts [3]

〈ψ̄ψ(µ)〉
〈ψ̄ψ〉0

=
µ2

o

µ2 ;
〈qq(µ)〉
〈ψ̄ψ〉0

=

√

1− µ4
o

µ4 ; nq(µ) = 8Nf f 2
π µ

(

1− µ4
o

µ4

)

. (2)

This has been confirmed by several simulations using staggered lattice fermions, eg. [2, 4]. How-
ever, it is possible to use the last of these predictions to develop the thermodynamics of the system
at T = 0 more fully:

pressurepχPT =

∫ µ

µo

nqdµ = 4Nf f 2
π

(

µ2 +
µ4

o

µ2 −2µ2
o

)

; (3)

energy densityεχPT = −p+ µnq = 4Nf f 2
π

(

µ2−3
µ4

o

µ2 +2µ2
o

)

; (4)

conformal anomaly(Tµµ)χPT = ε −3p = 8Nf f 2
π

(

−µ2−3
µ4

o

µ2 +4µ2
o

)

. (5)

Note that(Tµµ)χPT < 0 for µ >
√

3µo.
These results should be contrasted with those of another paradigm for cold dense matter,

namely a degenerate system of weakly interacting (thus deconfined) quarks populating a Fermi
sphere up to some maximum momentumkF ≈ EF = µ :

nSB=
Nf Nc

3π2 µ3; εSB= 3pSB=
Nf Nc

4π2 µ4; (Tµµ)SB= 0. (6)

In this system superfluidity arises from condensation of diquark Cooper pairs from within a layer
of thickness∆ centred on the Fermi surface; hence

〈qq〉 ∝ ∆µ2. (7)

Fig. 1 plots the ratiosnχPT/nSB, pχPT/pSB and εχPT/εSB as functions ofµ for the choice
f 2
π = Nc/6π2. Since pressure is just minus free energy density, by equating pressures we predict a

phase transition between the BEC phase and free quark matterat µQ ≈ 2.3µo
1. Becausen andε

are discontinuous at this point, this naive treatment predicts the resulting deconfining transition is
first order.

This simple-minded argument has motivated us to pursue lattice simulations of QC2D beyond
the BEC regime, usingNf = 2 flavors of Wilson fermion. Since Wilson fermions do not havea
manifest chiral symmetry, we have little to say about this aspect of the physics, which at high quark
density should anyway be of secondary importance for phenomena near the Fermi surface; they do
however carry a conserved baryon charge, which is crucial. Our initial runs were on a 83 × 16
system with lattice spacinga = 0.23fm, mπa = 0.79(1) andmπ/mρ = 0.779(4) [5]. In this talk I
will present as yet unpublished data from runs on an approximately matched 123×24 lattice with
a = 0.18fm,mπa = 0.68(1) andmπ/mρ = 0.80(1). Scales are set by equating the observed string
tension to (440MeV)3. In both cases the physical temperatureT ≈ 50MeV, although in fact the
second lattice is cooler. We used a standard HMC algorithm – the only modification to orthodox

1the point of equality atµ/µo ≈ 1.4 can be ignored because presumably at small densities a bag constant contribu-
tion to the BEC pressure can no longer be ignored.
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Figure 1: Comparison of thermodynamics atT = 0 for QC2D betweenχPT and free degenerate quarks [5].

lattice QCD is to include a diquark source term of the formjκ(−ψ̄1Cγ5τ2ψ̄ tr
2 + ψ tr

2 Cγ5τ2ψ1); this
mitigates the impact of IR fluctuations in the superfluid regime and also enables the algorithm to
change the sign of detM for a single flavor, thus maintaining ergodicity. Ultimately the physical
limt j → 0 must be taken.

Fig. 2 shows results for quark density and pressure, plottedin the same way as in Fig. 1. The
same gross features are present, namely a sharp rise fromµa≈ µoa = 0.32 up to a maximum, then
a fall to a plateau beginning atµQa≈ 0.5, which continues untilµDa≈ 0.8. If following Fig. 1 we
associate the plateau with the beginning of a degenerate matter phase then we identify a BEC/BCS
crossover atµQ ≈ 560MeV, corresponding to a quark densitynq ≈ 6fm−3, ie. roughly 13 times
nuclear density.

In contrast toχPT, the quark contribution toε exceeds the free field value by almost a factor
of 20 for µ >∼ µo, as shown in Fig. 3(a); it should be remarked here that unlikenq and p, ε is
subject to a quantum correction known as a Karsch coefficientwhich is still to be calculated for
this system, though its renormalised value is unlikely to differ by more than 50%. In any case, since
the Karsch coefficient isµ-independent, the shape of the curve will remain the same. Because of
this unexpected behaviour at smallµ , the energy per quarkεq/nq exhibits a shallow but robust
minimum forµ > µQ, as shown in Fig. 3(b), a feature completely absent in the model governed by
eqns. (2-6).

Fig. 4 plots quark and gluon contributions to the conformal anomalyTµµ . Once again, there
are unknown additive and multiplicative renormalisation factors, but the shapes of the curves will
remain unaltered. In panel (a) the vertical scales have beencunningly chosen to highlight the
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Figure 2: Equivalent to Fig. 1 for lattice QC2D with β = 1.9, κ = 0.168, ja = 0.04 on 123×24.

similarity of quark and gluon components, but their behaviour diverges sharply aboveµ ≈ µQ.
In panel (b) which covers a widerµ-range, we see that the gluon data is to good approximation
parabolic, suggesting thatεg < 3p asµ → ∞, and hence that conformal symmetry is not recovered
in this limit (although of course the dimensionless combination (ε −3p)/µ4 ∝ µ−2). The negative
value ofTµµ at largeµ has also been predicted using aχPT treatment in which asymptotic freedom
is taken into account [6]. Another very striking feature of Fig. 4(b) is the sharp change of behaviour
in the quark component ofTµµ at µDa≈ 0.8.

Next consider the gluonic contribution to the energy density. Fig. 5 plots the dimensionless
combinationεg/µ4 againstµ ; of course this quantity is not predicted either inχPT or the free quark
gas. While we have no quantitative theory of the gluonic contribution to QC2D thermodynamics
at µ 6= 0, we would expect its relative importance to increase across a deconfining transition. In
fact, the ratio is remarkably constant over a wide range ofµ , as would be predicted by dimensional
analysis; in particular there is no singular bahaviour atµ = µQ, although there is some hint of a
systematic rise forµ >∼ µD.

In Fig. 6 we plot quantities which give information about thenature and symmetries of the
ground state. In the limitj → 0, the diquark condensate〈qq〉 is an order parameter for the sponta-
neous breaking of U(1)B symmetry leading to baryon number superfluidity. Although the data of
Fig. 6 is taken withj 6= 0, implying some care must be taken with the extrapolationj → 0 at small
µ [5], we are confident that this symmetry is broken for allµ > µo. The approximate flatness of the
curve forµQ

<∼ µ <∼ µD is then evidence for a scaling〈qq〉 ∝ µ2 similar to (7). We take this as an
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Figure 3: (a) same as Fig. 2, but now includingεq; (b) energy per quarkεq/nq versusµ for two different
lattice spacings

indication that in this region the system consists of degenerate quark matter with a Fermi surface
disrupted by a BCS instability.

The Polyakov line is an order parameter for deconfinement in the limit of infinitely massive
quarks – away from this limit it continues to yield information on the free energy of an isolated
color source. Fig. 6 shows that QC2D remains confined forµ < µD, but that there appears to be
a transition to a deconfined state for chemical potentials inexcess of this value. In physical units
µD ≈ 900MeV, corresponding to a quark densitynq ≈ 35fm−3, some 80 times nuclear density.

In conclusion, the simulations suggest that QC2D has three distinct transitions (or at least
crossovers): the first atµ = µo is a second order phase transition (in the limitj → 0) from vacuum
to a BEC superfluid, and is described accurately for the most part byχPT (the quark energy density
εq looks to be an important exception); the second atµ = µQ is a BEC/BCS crossover to form a
ground state whose thermodynamic behaviour suggests it is formed of degenerate quark matter
with a well-defined Fermi sphere, albeit one whose surface isdisrupted by a BCS condensate; the
third atµ = µD is signalled by a discontinuity in gluon energy density, thequark contribution to the
conformal anomaly, and a non-zero Polyakov loop, and corresponds to deconfined quark matter.
Although the low density BEC phase is clearly unphysical (since to first approximation nuclear
matter in our world is a degenerate system of nucleons), it may well be that forµ >∼ µQ QC2D has
important and relevant lessons for quark matter in real QCD.

In particular, betweenµQ andµD the system looks to resemble the “quarkyonic matter” phase
recently postulated on the basis of large-Nc arguments [7]; namely it is a state in which matter is
degenerate so that there is a well-defined Fermi momentum scale, but also confined so that excita-
tions above the ground state remain color singlet. A recent study of a Two Color quarkyonic phase
using the PNJL model has appeared in [8]. An interesting issue is whether QC2D is special in that
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Figure 4: (a) Quark and gluon contributions toTµµ vs. µ ; (b) same as (a) with a scale extending to largerµ .

the 2-body bound states required by color confinement are also preferred by more general renor-
malisation group arguments [9]. Whatever the outcome, to our mind the study of deconfinement in
this hitherto-unexplored physical regime promises to be fascinating.
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