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1. Introduction

The infra-red problems which plague gauge theories can be traced back to the assumption that
the coupling switches off asymptotically, so that the Lagrangian become free and can be identified
with physical particles. While this may be an acceptable in Yukawa type theories, it clearly does
not hold in QED or QCD – the latter giving the most obvious counterexample, since there are no
free quarks or gluons [1, 2].

The essential idea behind the dressing approach is that in order to describe physical charges we
must consider not just the Lagrangian fermions fields ψ , but composite operators h−1[A]ψ , where
the ‘dressing’ h−1[A] transforms as

h−1[A]→ h−1[A]U when ψ →U−1
ψ .

This is of course a minimal requirement, such that the composite is gauge invariant. We will
discuss explicit forms of the dressing below. The dressing approach has appeared in various guises
in the literature, and has been used for a variety of purposes, see for example [3 – 5]. Here we will
take a bottom-up approach, starting with a simple gauge theory which can be solved exactly, and
showing that physical states are indeed dressed states. For example, we will construct dressed states
which describe asymptotic, or ground state, charges. We will then construct states in which the
electromagnetic fields are confined to a compact region. These are necessary for treating processes
such as pair creation and hadronisation, where causality constrains the spatial extent of the fields.

Finally, we turn to non-abelian theories and discuss the nonperturbative impact of the Gribov
ambiguity on the construction of coloured charges.

2. Physical charges

For concreteness and simplicity we focus in this section on the toy model of U(1) gauge fields
with heavy matter, fixed to move at velocity vµ , i.e.

L =−1
4

FµνFµν + iQ†vµ
(
∂µ + ieAµ

)
Q . (2.1)

This is just the leading order, in m−1, ‘HQET’ action for QED [6]. The use and renormalisation
of our dressed charges in perturbation theory is discussed thoroughly in [7, 8]. Working in a
Hamiltonian picture, we have two equations to solve in order to identify physical states, namely
the Schrödinger equation and Gauss’s law,

Ĥ|Ψ〉= i∂t |Ψ〉 , ∇·E|Ψ〉=−eQ†Q|Ψ〉 , (2.2)

respectively. In this theory we can solve both, and so write down physical states, exactly. For exam-
ple, the gauge invariant ground state wavefunctional of a single moving charge in the Schrödinger
representation is, up to a phase which we do not need here [9],

Ψ[A,Q†] = exp
[

ie
∫ d3 p

(2π)3 e−ip·xt

(
ip
|p|2
− ivT

|p|2− (v.p)2

)
·A(p)

]
Q†(xt)Ψ0[AT ] , (2.3)
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where Ψ0 is the gauge invariant photon vacuum, xt := x0 + vt is the path along which the heavy
charge moves, and a superscript T denotes projection onto the transverse part using the operator
Ti j = δi j− pi p j/p2.

This is a ‘dressed’ state: the matter field Q† is surrounded by a cloud of ‘photons’, and neither
part is individually gauge invariant: only together do they give a gauge invariant charge. The
longitudinal term, in p ·A, is required by Gauss’s law and this is what ensures gauge invariance of
the state1. Solving the Schrödinger equation generates the gauge invariant terms in vT ·A which
ensure the correct physics. If we calculate the electromagnetic fields of this state, we find

〈E(z, t)〉Ψ = − eγ

4π

z−xt[
|z−xt |2 + γ2(v.(z−xt))2

]3/2 , (2.4)

〈B(z, t)〉Ψ = v×〈E(z, t)〉Ψ , (2.5)

where γ ≡
√

1+v2 is the usual Lorentz gamma factor. These are precisely the electromagnetic
fields of a charged particle moving along the path xt [10].

Note that at v = 0, the state (2.3) describes Dirac’s static electron [11]: the exponent of the
wavefunctional reduces to

ie
∇·A(x0)

∇2 ≡− ie
4π

∫
d3x ∇

(
1

|x−x0|

)
·A(x) , (2.6)

where we have inverted the Fourier transform and, on the right, used the explicit form for ∇−2. The
magnetic field (2.5) vanishes in the static limit and (2.4) reduces to the Coulombic electric field of
a static charge.

These states are clearly nonlocal, which is an immediate consequence of Gauss’s law. This
nonlocality is inevitable in gauge theories; for example, recall that, in QED, the charge operator
acting on a gauge invariant state takes the form

Q|Ψ〉=
∫
S∞

ds·E|Ψ〉 , (2.7)

which is the radial electric field component integrated over the sphere at infinity. If this is to return
a non–zero value, the charge must be nonlocal. Nevertheless, we saw in (2.4) and (2.5) that the
state has good, local observables. Our states were derived simply from imposing Gauss’s law and
solving the Schrödinger equation, so we see that dressed charges arise very naturally in gauge
theory. The calculations presented here can of course be extended to QED proper, and QCD in
perturbation theory [7, 8].

Note that the fields (2.4) and (2.5) are spread through the whole of space. This is a direct
consequence of Gauss’s law. The same is true for the ground states of multiple charges described
by adding more matter fields and identical dressing factors to the state (2.3). Such ground states
therefore correspond to collections of asymptotic particles, the fields of which have had time to
spread through all of space. In QED, it is indeed these dressed charges which become free at
asymptotic times, whereas the ‘undressed’ Lagrangian matter fields do not [1, 2, 12].

1It is easily checked that the state (2.3) is invariant under Q†→ exp(ieΛ)Q† and A→ A−∇Λ.
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Now, consider an e+ e− pair created in some collision. At a finite time after creation, their
electromagnetic fields must be confined to a finite volume of space, by causality. As such, Gauss’s
law must allow a description of charge neutral states in which the fields are constrained to a finite
volume. We turn to such states below.

3. Compact charges

For simplicity, consider two static charges at positions ±a; we will return to moving charges
shortly. From (2.6), the exponent of the dressing for two asymptotic (ground state) charges of
opposite sign and positions ±a is

1
4π

∫
d3x ∇

(
1

|x−a|
− 1
|x+a|

)
·A(x) , (3.1)

which describes two of Dirac’s static electrons. Choosing a volume V in which the electromagnetic
fields are to be confined, the appropriate dressing is [9],

1
4π

∫
V

d3x ∇

(
1

|x−a|
− 1
|x+a|

+ fV (x)
)
·A(x) , (3.2)

where we have restricted the spatial integration in (3.1) to V , and introduced a function fV under the
derivative. This function is determined, once V is chosen, by demanding gauge invariance of the
state. For example, in the case that V is a sphere of radius R centred on the origin, with R > a≡ |a|,
the function fV can be shown to be [9]

fV (r,θ) =
4
R

∞

∑
`=0

(
`+1
2`+1

)( a
R

)2`+1( r
R

)2`+1
P2`+1(cosθ) . (3.3)

This fV is independent of the azimuthal angle around the axis on which the two charges sit, and the
P̀ are Legendre Polynomials. The resulting radial electric field component of the state is plotted in
the right hand panel of Fig. 1. Comparing with the field of two asymptotic static charges, plotted
in the left hand panel, the distortion of the compact field close to the boundary can be clearly seen.
In particular, the radial field strength vanishes on the bounding sphere, as the total charge within
the ball is zero.

We may also calculate the potential between the two charges, which is the analogue of the
inter–quark potential. Before doing so, recall that we can make a gauge invariant charge–anticharge
state by linking the matter fields with a Wilson line. In this case, the electric field is also restricted
to a compact region; it is only non–zero on the path connecting the charges. The potential between
the charges in this state is linear rising, but with a divergent coefficient going like δ 2(0), due to the
infinitesimal extent of the string in its transverse directions. So although this state is gauge invari-
ant, it is infinitely excited and therefore completely unphysical. With this in mind, the potential Vcc

between our two compact charges can be found to be

Vcc =− e2

4π

1
2a

+
e2

2π

(
a2R

R4−a4 +
1
R

tanh−1 a2

R2

)
, (3.4)

which is plotted in Fig. 2. The first term of (3.4) is just the Coulombic potential between the two
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Figure 1: Left: the radial electric field of two asymptotic, static charges. Right: the radial electric field
of two compact charges. Note the deformation of the field due to its restriction to finite volume, and the
vanishing field strength on the bounding sphere.
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Figure 2: Blue (solid) line: the potential Vcc (in units of 1/R) between two compact charges, plotted against
their separation, relative to the radius of the ball, 2a/R. Dashed (red) line: the Coulombic potential between
two asymptotic charges, for comparison.

charges at ±a, and this is also plotted in Fig. 2 for comparison. Our inter–charge potential, unlike
that in the Wilson line state, is finite for all separations of the charges a < R. (As it is clearly
unphysical to pull the charges past the boundary of the field envelope, the potential diverges at
a = R.) When the charges sit deep inside the ball, a� R, the potential is approximately Coulombic.
This is just the statement that the charges want to be ‘fat’; i.e. their fields naturally expand out into
the whole of space. This is what happens when time evolves; the charges throw off energy, and V
expands as the charges relax to their Coulombic ground state.

In this static charge system, the choice of V is arbitrary, when considered as an initial condition
for states in a fixed time slice. More generally, though, we would expect V to be determined
dynamically. For an example of this, we return to the case v 6= 0. By considering states in which
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the charges occupy the same spatial position at some time, we have built models of pair creation
and annihilation [9]. In the former, the electromagnetic fields propagate out from the point of
creation and are constrained to a volume which we have shown to be a ball at leading order in t, in
agreement with causal expectations. In pair annihilation, the electromagnetic fields which remain
after the matter fields have vanished continue to evolve under the free photon Hamiltonian in such
a way that a cavity forms around the annihilation point. This cavity eats up the fields as it expands,
until eventually all observers agree that the charges have vanished, and the state decays to the empty
photon vacuum.

4. Coloured charges

We now turn to the non-abelian theory, and consider the dressings which describe gauge in-
variant colour charges, i.e. quarks. Recall that in order for the composite object q := h−1[A]ψ to
be gauge invariant if we transform ψ →U−1ψ , the dressing must obey

h−1[AU ] = h−1[A]U , AU
µ ≡U−1AµU +

1
g

U−1
∂µU , (4.1)

To proceed, we need to understand where objects like h−1 come from. To pursue this, consider
some gauge fixing condition, call it χ(A) = 0. Now, given any gauge field A, we find the field–
dependent transformation h[A] such that the field is taken into the chosen gauge, i.e. χ(Ah[A]) = 0.
We then do the same thing starting with the field at any other point on its gauge orbit AU , i.e. we
find h[AU ] such that χ(AUh[AU ]) = 0. Provided we have a good gauge fixing condition, the two
fields in the gauge slice must be equal. From this we read off the transformation property of h[A],

Ah[A] = AUh[AU ] =⇒ h−1[AU ] = h−1[A]U . (4.2)

In other words, dressings for single charges are the, inverses of, field–dependent gauge transforma-
tions which take us into particular gauges. Note that if we reverse these arguments, then, starting
from a given dressing, we can construct from it a gauge fixing condition. To illustrate these ideas,
we can generate the ‘Coulomb dressing’ by solving the condition

∇ ·
(
h−1Ah+

1
g

h−1
∇U
)

= 0 , (4.3)

for h−1 as a function of A. This can be performed in perturbation theory, and generalises Dirac’s
static electron to the non-abelian theory [13].

Perturbatively, therefore, we are able to write down gauge invariant quarks, but we know there
should be a nonperturbative obstruction to doing so, since no free quarks are observed in nature.
Note that the construction above relied on having a good gauge fixing condition. Nonperturbatively,
however, there is no perfect gauge fixing. All admissible conditions χ , in the sense that they can be
imposed on the space of gauge fields which fall appropriately quickly at infinity [14], have Gribov
copies [15 – 17]. The impact of the Gribov ambiguity on the construction of a coloured charge
is seen by returning to h[A]. Due to the copies, the field–dependent gauge transformation h[A] is
multiply defined, since there are multiple configurations obeying χ(A) = 0 along a particular orbit,
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and therefore h−1[A] does not exist. Gribov copies, therefore, prevent us from constructing a colour
charged state nonperturbatively.

Now, if one can excise Gribov copies from the theory, then a gauge invariant colour charge can
be defined (and from it, a perfect gauge fixing condition). For example, time evolution is discon-
tinuous due to the presence of copies, at least in Coulomb gauge [18], and so one could consider
restricting the space of gauge fields to the fundamental modular region. Even then, however, Gri-
bov copies remain on the boundary. In this case one has to identify state wavefunctionals in order
to have a well–defined time evolution. If the copies can be removed in this way, or dealt with using
some other approach, see for example [19, 20], then we must look elsewhere for the confinement
mechanism. If, however, one cannot remove the copies entirely, then physical states must be white,
i.e. colour must be confined.

5. Conclusions

We have seen that the ‘dressed’ description of charges as composites of matter fields and bo-
son clouds arises naturally in gauge theories. We have given the ground state (asymptotic) dressing
for a moving charge, and using these states to describe asymptotic particles, rather than assuming
that the matter fields become free, is known to vastly improve the infra–red behaviour of scatter-
ing amplitudes [21]. We have also given, for the first time, a description of a pair of compactly
dressed charges, in which the fields are constrained to a finite, but non-singular, volume. Unlike
the gauge invariant, but unphysical, state described by linking two matter fields with a Wilson line,
the potential between the compact charges is finite.

In future work we will extend this construction to non-abelian theories, which will allow us to
model mesonic states. It would also be extremely interesting to relate the inherent nonlocality of our
charges to the nonlocality of the horizon function appearing in the Gribov–Zwanziger Lagrangian
[22] and related nonlocal operators [23].
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