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1. Introduction

The gluon is the fundamental particle of the Yang-Mills theory. Gauge invariance forbids a
mass term in Lagrangian. The gluon is therefore a massless particle. However it has been argued
long time ago [1] that non-perturbative effects might lead to a dynamical mass for the gluon without
breaking gauge invariance.

Massive and massless particles are different representations of the Poincaré group. Massless
particles can not be at rest and only the two maximally spin projections are allowed.A contrario,
massive spin-s particles have 2s+ 1 polarisation states. The gluon, a vector particle, has intrinsi-
cally two degrees of freedom but, in view of the its non-trivial dispersion relation, one can wonder
if the gluon gains a third polarization.

Those group theory considerations are only valid for free particles. The problem of the num-
ber of gluonic degrees of freedom could seem ill-defined since gluons are never free particles.
However, beside gluon mass generation, gluon self-couplings induce the existence of bound states,
called glueballs. Glueballs are well described by bound states of two, three or more constituent
gluons [2]. The problem could be then understood as with how many degrees of freedom should
we model effective gluons to have a coherent description of glueballs.

Those effective gluons may have two of three polarisation states if we think about massless or
massive particles. As we will see, the glueball spectrum depends of the number of gluonic degrees
of freedom. It could be then possible to answer to our question by resorting to glueball spec-
troscopy. I will then explore the differences of models for glueballs with two and three polarisation
states for the constituent gluons. Due to the lack of experimental candidates for glueballs, I will
compare both approaches with quarksless Quantum Chromodynamics (QCD) spectrum obtained
on a lattice.

In section 2, I review the concept of the gluon mass generation. The simplest way to incorpo-
rate this feature in a glueball formalism is to allow three polarizations for the effective gluons. We
developed those models for two- and three-gluon glueballs in section 3. We then conclude that this
description is not appropriate to compare with the glueballspectrum obtained in lattice QCD. I then
review the construction of two-gluon glueballs with only two degrees of freedom for the gluons in
section 4. I present also arguments favor this interpretation of lattice results for two-, three and
four-gluon glueballs and gluelump in section 5. Section 6 summarizes the conclusions.

2. Gluon Mass

The gauge bosons are massless at the Lagrangian level but there are hints that they obey mas-
sive dispersion relations. Gauge invariance through the Ward identity kµΠµν(k) = 0 forbids the
apparence of a mass term in all order in perturbation theory.However, a pole in the the self-energy
would imply a mass term in the propagator without breaking gauge invariance [3]. This is the
Schwinger mechanism [4].

The so called dynamical mass, is defined by the position of thepole of the dressed gluon
propagator. Cornwall arrived to such a dynamical mass by analyzing the gluon Dyson-Schwinger
equations in the early 80’s [1]. This infinite set of couple equations cannot be solved analytically.
One must resort to a truncation scheme. By a clever resummation of Feynman diagrams, the pinch
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technique, Cornwall found a gauge-invariant procedure to truncate these equations without spoiling
gauge invariance. With this technique, a full gluon propagator in quarkless QCD emerges

d−1(q2) =
(
q2 +m2(q2)

)
bg2 ln

[
q2 +4m2(q2)

Λ2

]
, (2.1)

with a dynamical mass

m2(q2) = m2

(
ln
[
(q2 +4m2)/Λ2

]

ln(4m2/Λ2)

)−12/11

. (2.2)

In Eq. (2.1),b= 11N/48π2 is the first coefficient of the beta function for quarkless QCD. The mass
term that appears has finite value at zero momentum. The gluonmass can be related to the gluon
condensate〈0|Fa

µνFµν
a |0〉 from which the valuem = (500± 200) MeV arises. The perturbative

pinch technique invented by Cornwall was recently improvedand applied for the gluon Dyson-
Schwinger equations as a convient truncation scheme [5]. Various solutions for the gluon mass
were found where the solution (2.2) emerged as a particular case [6].

Bernard proposed a different definition for the gluon mass [7]. Consider the potential energy
of a pair of heavy, static sources in the adjoint representation of the color group. As the separation
of the adjoint sources (static gluons) is increased, the potential will increase linearly as a string or
a flux tube is formed between them. The energy stored in the string will at some point be large
enough to pop up a pair of dynamical gluons out of the vacuum. The effective gluon mass is
defined as half of the energy stored in the flux tube at this point. Monte-Carlo simulations of this
phenomenon show a effective gluon mass in the range 500-800 MeV.

The effective gluon mass was also investigated in the bag model [8]. Even though the gluon
is massless in the bag model, a net energy of 740±100 MeV is required to produce a gluon due to
confinement.

All these arguments support the use of an effective gluon mass to describe the dynamics of
QCD. It is therefore possible to envisage an approach to bound states made of constituent massive
gluons. Massive representations have more degrees of freedom that massless ones. Gluon with
three polarisations should them be used in glueballs. However, the longitudinal component could be
eaten somehow by the scalar massless pole that appears to trigger the Schwinger mechanism [3, 5].
In the next sections, I review both approaches.

3. Three Degrees of Freedom

3.1 Two-gluon Glueballs

One of the pioneering works on two-gluon glueballs was the study by Cornwall and Soni [9].
The large value of the effective gluon mass led them to propose a nonrelativistic approach to gluo-
nium. They used a confining potential which saturates at large distances constrained by Bernard’s
results [7]

VC(r) = 2m
(

1−e−r/rs

)
. (3.1)
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The construction of the basis when the gluons are spin−1 particles is an easy task. The quan-
tum numbers allowed for a system of two gluons with three degrees of freedom are simply given
by

JJJ = LLL+SSS, P = (−1)L, C = +, andS= {0,1,2}. (3.2)

Cornwall and Soni presented results for states with quantumnumbersL = 0, JPC = 0++,2++, and
L = 1, JPC = 1−+,2−+. The presence of vector states is a characteristic of modelswith three
degrees of freedom for the gluons. Those states are forbidden when only two polarization are taken
into account.

The OGE potential (3.3) is necessary to have a detailed spectrum. Indeed, without OGE,
the confining potential (3.1) gives rise to degenerate scalar and tensor (L = 0) andL = 1 states.
The Coulomb and spin-dependent interactions at short-range were derived from a nonrelativistic
expansion of the Feynman graphs for two-gluon scattering. They considered massive exchanged
gluons (with the same mass as the constituent one) to keep thegauge invariance of the amplitudes to
the given order. This one-gluon exchange (OGE) potential involves Yukawa, spin-orbit, spin-spin
and tensor forces,

Voge(rrr) =− λe−mr

r

(
2s−7m2

6m2 +
1
3

SSS2
)

+
πλδ (rrr)

3m2

(
4m2−2s

m2 +
5
2

SSS2
)

− 3λ
2m2LLL ·SSS1

r
∂
∂ r

e−mr

r
+

λ
2m2

[
(SSS·∇∇∇)2− 1

3
SSS2∇∇∇2

]
e−mr

r
.

(3.3)

s is the glueball mass squared, which we can set tos= 4m2 in a first approximation, andλ = 3αs

is the strong coupling constant.

The screened potential led to a spectrum with relatively lowglueball masses. The scalar and
tensor glueballs had masses around∼ 1.3 and∼ 1.6 GeV, respectively, see Fig 1. At that time,
there were no lattice study of the Yang-Mills spectrum and noconclusion concerning the relevance
of the number of gluon degrees of freedom of were drawn.

After this pioneer work, various models were constructed onthe same ground [10, 11] with the
possibility to compare the predictions of the models with anaccurate glueball spectrum obtained
in quarkless QCD lattice simulations [12].

All ingredients needed to reproduce the low-lying pure gauge spectrum of lattice QCD with
two constituent gluons owning three degrees of freedom wereidentified [11]. We display in Fig. 1
(right), the spectrum obtained in ref. [11]. The Hamiltonian has a relativistic kinetic energy,
Ek = 2

√
ppp2 and spin-dependent potentials coming from the OGE. We observed vector and ten-

sor glueballs in the spectrum not observed in any lattice study but the others states match onto the
lattice data.

At this stage, we can not conclude on the relevance of this model. A comparison with an
equivalent model but with only two polarizations for the gluons is requested (cf. section 4.1). The
lattice studies [12] offer us the possibility to extend the model for negativeC−parity. In view of the
results of ref. [11], we hope to reproduce the glueball spectrum with three gluons with an extension
of this model. We will investigate this generalization in the next subsection.
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Figure 1: Left, glueball spectrum of ref. [9]; right, comparison between lattice results [12] (circles) and
two-gluon glueballs from ref. [11].

3.2 Three-gluon Glueballs

A complete investigation of the glueball spectrum in constituent models has to include three-
gluon glueballs. Indeed, in this approach negativeC-parity glueballs involve at least three con-
stituents. There are two color wave functions, totally symmetric or totally antisymmetric, coupling
three adjoint representations into a singlet. They do not mix and we are only interested in the
symmetric one,dabcAa

µAb
νAc

ρ , namely theC = − states. The construction of the basis is a straight-
forward generalization of the two-body case. The only subtlety is the symmetry. Indeed, for the
coupling of three spin−1 representations, we have

111⊗111⊗111 = 000A⊕111S⊕222MS⊕333S. (3.4)

The subscriptsA,S,MS stand for anti-symmetric, symmetric and mixed symmetry spin functions
respectively. The total wave function is fully symmetric, the low-lying states (L = 0) are then
1−−,3−−, and 0−+. We are are not interested in the latter since two gluons can also bound on
positive charge conjugation. A state with the quantum numbers 2−− is only possible with a spacial
function owing a mixed symmetry which will rise the mass of the state.

The low-lying three-gluon states were studied in [13, 14, 15, 16]. Only the first work [13] uti-
lized a non-relativistic Hamiltonian but all references considered spin-dependent potentiel coming
from the OGE. Without the OGE potential, states with the sameorbital angular momentum would
be degenerate. The low-lying 1−− and 3−− lie in the same mass range, as expected from the sym-
metry argument, and are found in agreement with the lattice results, see Fig. 2 (right). From the
lattice studies [12], we observed the 2−− lying between the 1−− and the 3−−, in clear contradiction
with the symmetry argument. Some authors [14, 16] reproduced the tensor 2−− exactly where the
lattice studies observed it. However, they made a mistake since they considered the same symme-
try function for the three states(1,2,3)−− ! When using the correct symmetry function, the 2−−

appears to be higher the other states [15].
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Figure 2: Comparison between lattice results [12] (circles) and two-gluon glueballs with two degrees of
freedom (left) from ref. [22] (squares) and ref. [20] (triangles) and three-gluon glueballs with three degrees
of freedom (right) from ref. [14] (squares) and ref. [17] (triangles).

We pointed out a first discrepancy, the 2−−, between lattice QCD and constituent models for
glueballs when the gluon has three degrees of freedom. We nowturn our attention to orbitally
excited states. A positive parity requires an odd angular momentum. The coupling of the two
internal angular momenta forming the main componentL = 1 has more than one symmetry. Hence,
the four states(0,1,2,3)+− are degenerate without spin splitting [17]. Even with the addition of
spin-spin and spin-orbit interactions, they remain in the same mass range. There is no way to
accommodate the lattice spectrum in which they are 1.8 GeV between the scalar and the vector, see
Fig. 2 (right).

In contradiction with other authors, which missed the correct symmetry argument, we con-
clude in ref. [17] that a constituent model for negativeC−parity glueballs based on gluons with
three degrees of freedom is not able to reproduce the latticespectrum. However, for positive
C−parity glueballs, constituent models in which the gluon hasa third longitudinal component
reproduce the lattice spectrum. But we notice the appearance of spurious states, vector and ten-
sor, not observed in any lattice studies. In order to solve this apparent contradiction, we will now
explore models with only two degrees of freedom for the gluon.

4. Two Degrees of Freedom

4.1 Two-gluon Glueballs

When constructing a basis with two spin-1 particles, the decompositionJJJ = LLL+SSSis employed.
One then realizes that the basis contains too many states, for instance withJ = 1 [11]. Those states
are not obtained by any lattice study. A way out is to recall that the coupling of two transverse
particles forbids the existence of vector states. This factis known as Yang’s theorem [18] (a vector
meson does not decay into two photons). One may then assume that, despite the fact that the gluon
gains a mass (induced by confinement), it remains transversewith only two spin projections.

The formalism to treat two-body relativistic scattering developed by Jacob and Wick [19]
allows also the description of representations with only transverse gluons. I sketch its main features

6
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and apply this formalism to the study of the two-gluon glueball.

The Jacob and Wick formalism is based on states,|J,M;λ1,λ2〉, which are eigenstates ofJJJ2

andJz and whereλ1 andλ2 represent the allowed spin projections. In the case under consideration,
the projections can only be maximal,i.e.±s for a particle with helicity-s. The angular part of these
states are related with the conventional basis states by means of Clebsch-Gordan coefficients:

|J,M;λ1,λ2〉 = ∑
L,S

[
2L+1
2J+1

]1/2

〈LS0Λ|JΛ 〉 〈s1s2λ1(−λ2)|SΛ 〉
∣∣2S+1LJ

〉
, (4.1)

with Λ = λ1−λ2. The radial part (depending onJ) is determined variationally with the Hamilto-
nian. The relation (4.1) is essential to compute matrix elements.

The states are not eigenstates of parity and does not have a good behavior under the exchange
of the two particles. For a two-gluon state,s1 = s2 = 1, it holds

P |J,M;λ1,λ2〉 = (−1)J |J,M;−λ1,−λ2〉 (4.2)

P12|J,M;λ1,λ2〉 = (−1)J |J,M;λ2,λ1〉 . (4.3)

A system of two gluons has to be totaly symmetric. Imposing this constraint as well as defined
parity lead to selection rules on the spin. It can be checked that one can only obtain the following
states [20]

∣∣S+;(2k)+
〉
,
∣∣S−;(2k)−

〉
,
∣∣D+;(2k+2)+

〉
,
∣∣D−;(2k+3)+

〉
, k∈ N. (4.4)

TheS- andD-labels stand for helicity-singlet (λ1 = λ2) and -doublet (λ1 = −λ2) respectively. We
recognized in Eq. (4.4) the four families predicted by Yang for two photons [18].

It is readily observed that only the|S±;(2k)+〉 states can lead toJ = 0, while the|D±〉 states
always haveJ ≥ 2 (sinceJ > |λ1− λ2|). Obviously, a consequence of Yang’s theorem is that no
J = 1 states are present. Only the|D−〉 states can generate an odd-J, butJ is at least 3 in this case.

Lattice QCD confirms the absence of the 1−+ and 1++ states, at least below 4 GeV. It is
worth mentioning that glueball states with even-J and positive parity can be built either from the
helicity-singlet or from the helicity-doublet states. Theimportant result is that the gluons remain
transverse and therefore the helicity formalism exactly reproduces theJPC content for glueballs
which is observed in lattice QCD, without the extra states which are usually present in potential
models with gluon owing three degrees of freedom.

The helicity formalism was applied for the first time by Barnes [21]. It has several advantages
not shared by the more conventional non-relativisticLS-basis. It avoids spurious states forbidden
by the coupling of two transverse gluons but also reproducesthe lattice QCD hierarchy.

Within this approach, a givenJPC state can be expressed as a linear combination of(L,S) states
thanks to Eq. (4.1). The complete expressions for these decompositions can be found in Mathieuet
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al [20]. We give here the angular dependence, thanks to Eq. (4.1) of the ground states of Eq. (4.4):

∣∣S+;(0)+
〉

=

√
2
3

∣∣1S0
〉
+

√
1
3

∣∣5D0
〉
, (4.5a)

∣∣S−;(0)−
〉

=
∣∣3P0

〉
, (4.5b)

∣∣D+;(2)+
〉

=

√
2
5

∣∣5S2
〉
+

√
4
7

∣∣5D2
〉
+

√
1
7

∣∣5G2
〉
, (4.5c)

∣∣D−;(3)+
〉

=

√
5
7

∣∣5D3
〉
+

√
2
7

∣∣5G3
〉
. (4.5d)

These decompositions are essential for computing the matrix elements of non-relativistic operators
(spin-spin, spin-orbit and tensor). Let us note that the matrix elements of these operators are equal
for |S+;(2k)+〉 and|S−;(2k)−〉 [20]. Therefore, the OGE potential would only furnish an overall
contribution.

Even though in this approach the singlet statesJP = (2k+,2k−) are degenerate, with a Cornell-
type (linear + Coulomb) potential, a nonrelativistic kinetic energy, which incorporates anad hoc
gluon massm, and using the helicity formalism, Barnes was able to reproduce the qualitative feature
of the pure gauge sector findingM(0±+) = 4.36m. The higher mass ratios were not in perfect
agreement with modern lattice results, implying the need for modifications.

This improvement was carried out in a work based on the Coulomb gauge Hamiltonian where
a relativistic kinetic energy was used [22]. In this model, gluons are linked by an adjoint string.
The adjoint string tensionσA = (9/4)σ is expressed in terms of the well-known fundamental string
tension for mesonsσ through the Casimir scaling hypothesis. Using typical values for the param-
eters,σ = 0.18 GeV2 for the fundamental string tension (extracted from mesons Regge trajectory)
andαS = 0.4 for the strong coupling, this model encodes the essential features of glueballs.

The spectrum of the Coulomb gauge Hamiltonian was in good agreement with lattice QCD.
Moreover, the singlet 2−+ and 2++ are degenerate as in the Barnes’ model, a characteristic of
the helicity formalism. The authors found a little difference between the scalar and pseudoscalar
glueball masses. This splitting, about 250 MeV was nevertheless not as strong as in lattice QCD
(850 MeV).

Recently, this problem was revisited keeping the basic ingredients needed for obtaining an
acceptable pure gauge spectrum compatible with lattice results, i.e. semi-relativistic energy and
the helicity formalism for two transverse gluons [20]. A simple Cornell potential was used but an
instanton induced force was added and with it the splitting between the scalar and pseudoscalar
glueballs was reproduced. There are arguments favoring an attractive (repulsive) interaction in-
duced by instantons in the scalar (pseudoscalar) channel ofglueballs [23].

The two-gluon spectrum is displayed in Fig. 2 (left). We notethat, comparing to the previous
models (with the three degrees of freedom for the gluons), wehave in the case at hand a perfect
agreement with the lattice spectrum without the need of spin-depend potential. The states are
naturally non degenerate thanks to the decompositions (4.5). Moreover, we have exactly the same
quantum numbers as observed in lattice QCD without extra states. Finally, a instanton contribution
is needed in the (pseudo)scalar sector as requested by the low energy theorems of the corresponding
correlators [2, 23, 24].

8
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4.2 Three-gluon Glueballs

The conclusion of the previous sections requires to be supported by a three-gluon analysis
with only two degrees of freedom. As far as I know, a proper inclusion of the helicity formal-
ism in a three-gluon system was not already proposed. But developments in that direction was
published [25, 26, 27]. The missing point is the generalization of the decomposition (4.1). Such
a formula would allow us to compute matrix elements between three-body wave functions. The
intrinsic difficulty inherent to a many-body system is the number of angular momenta implying
the multiplicity of recoupling schemes. Fortunately, the recoupling coefficients for the change of
basis from|(i j )k to |( jk)i are known [25, 26]. In principle, applying the decomposition (4.1) be-
tween the cluster(i j ) and the particlek and using the recoupling coefficients to fully symmetrize
the wave function, would give the desired three-gluon wave functions. I expected that a proper
inclusion of the three-body helicity formalism would reproduce the lattice spectrum for negative
charge conjugation sector.

5. Understanding the Lattice Spectrum

5.1 Glueball Correlators

In the previous sections, I showed that the lattice pure gauge spectrum are better reproduce
when considering only two gluonic degrees of freedom in a constituent models. I will now explain
how this fact can be understood by some group theoretical arguments [28].

Glueball masses are extracted from the corresponding correlators. For numerical purposes, a
discrete version of the correlators is implemented on a lattice but our classification remains valid.
The arguments developed here are also valid for other techniques (sum rules, AdS/QCD, etc.) [2]
used to find the properties of the gluonic correlators.

The gluon field strengthFµν is antisymmetric and has six components. But with the equations
of motion, pµFµν = 0 and pµ F̃µν = 0, only two components survive on-shell. To see this, it is
instructive to use the light-cone coordinates,p± = (p0 ± p3)/

√
2, in which pµ = (E,0,0,E) has

only one non-zero component,p+ = E
√

21. It is then straightforward to see that the only two
independent components areF−i = p−Ai with i ∈ {1,2}. Correlators are then build out of gluons
with two degrees of freedom.

The low-lying glueball correlators are composed of two gluon field strengths. Projecting out
the color singlet, we obtain the following decomposition inirreducible tensors

Fa
µν ⊗Fb

αβ
δab−→ Fa

µνFµν
a ⊕Fa

µν F̃µν
a ⊕

(
Fa

µαFaα
ν − 1

4
gµνFa

αβ Fαβ
a

)
⊕
(

Fa
µα F̃aα

ν − 1
4

gµνFa
αβ F̃αβ

a

)
.

(5.1)
The ground states of two gluons is then composed of a scalar, apseudoscalar, a tensor and a
axial tensor. They correspond exactly to the states observed in lattice QCD and obtained with the
helicity formalism. The excited states of two gluons are obtained in a similar way but starting with
Fa

µνD[λ1
· · ·Dλn]F

a
αβ [29].

The decomposition (5.1) can be recast in a more convenient form by the use of young dia-
grams [28]. We denote by a box a gluon with two degrees of freedom. Upper indices represent

1with the light-cone metric,g−+ = g+− = gii = 1, one hasp− = p+.
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color indexes. We have to symmetrize the product of two boxessince the two particles are identical
and we get (

a⊗ b
)

= •(ab) ⊕ (ab)⊕ [ab] (5.2)

The vector state is not a color singlet and disappear when we contract the tensors with the singlet
color function. We can repeat the same operation for the low-lying three-gluon states:

(
a⊗ b⊗ c

)
= •[abc] ⊕ (abc) ⊕

a c
b ⊕

a c
b ⊕ (abc). (5.3)

Only the totaly symmetric(abc) and antisymmetric[abc] color functions give rive to color singlets.
They are respectivelyC = − andC = +. From the decomposition in irreducible tensors (5.3), we
see that the only low-lying three-gluons with a negative charge conjugation are the vector and the
spin 3 tensor. Those quantum numbers should be the ones we would get by an application of the
three-body helicity formalism. But there are exactly the low-lying glueballs with negativeC−parity
observed in lattice QCD.

5.2 A Four Gluon State

The lattice studies tell us that beside the low-lying spin 1 and spin 3, there are two spin 2 and
one scalar glueballs withC = −. We could understand the spin 2 as orbital excitation of the lower
spin 1. However, we claimed that the scalar 0+− is actually a four-gluon states [28]. An orbital
excitation can not give rise to a scalar particle. Moreover,there are two scalars in the decomposition
of four gluons

( a⊗ b⊗ c⊗ d ) = •(abcd) ⊕•
a b
c d ⊕·· · , (5.4)

where the ellipses denotes higher spin tensors. The configuration a b
c d corresponds to an negative

C−parity in which the gluon are in the color function[[888,888]111000, [888,888]111000]111 [28]. In this particular
configuration, the Coulomb interaction vanished between each pair of gluons. The interaction is
only given by the confinement.

In the ref. [28], we computed the mass of the 0+−. Since we are not able to implement the
helicity formalism for more than two particles, we assumed adecomposition in two clusters of two
gluons. This approximation led us to a (dimensionless) mass

r0M0+− = 11.61, (5.5)

in agreement with the recent lattice resultr0M0+− = 11.66±0.19 [12].

5.3 Gluelump Spectrum

A gluelump is defined as a bound state of the gluonic field and a static (scalar) octet color
source. The gluelump spectrum was computed on a lattice in ref. [30]. The low-lying gluelumps
can be interpreted in term of a single gluon bound with the octet source [31]. When the gluon
has only degrees of freedom, the hierarchy observed in lattice is exactly reproduced,i.e 1+−, 1−−,
2−−, 2+−, 3+−. However, if we allow the gluon to have the longitudinal component, the lowest
gluelump state is a 0−− [28]. This argument supports the idea developed in the manuscript that the
gluon has only two degrees of freedom although it gains an effective mass.

10



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
2
4

How Many Degrees of Freedom Has the Gluon ? Vincent Mathieu

6. Conclusion

I reviewed two different constituent models of glueballs with the aim to identify the correct
number of gluonic degrees of freedom in quarless QCD. Modelswith three gluonic degrees of
freedom are apparently in agreement with the low-lying (positive charge conjugation) lattice spec-
trum. However, the existence of extra states in the basis, the need of spin-dependent forces and the
complete forgetting of instanton-induced interactions inthe scalar channels are strong arguments
not in favor of this approach. Indeed, the extension to negative charge conjugation (three-gluon
glueballs) is in clear disagreement with the lattice spectrum. The symmetry arguments invoked in
the demonstration revealed the misconstruction of the basis.

The problems encountered in the first model disappear if we use gluons with only two degrees
of freedom. The construction of the basis is a little bit moreinvolved but the exact hierarchy without
spurious states is recovered. The interaction potential can be taken at its lowest form (a Cornell
shape without OGE) and instanton contributions are included as requested by other techniques.
Within this model clear understanding of the lattice spectrum is gained. It remains nevertheless to
generalize to three-gluon states. But I am convince that a proper inclusion of the helicity formalism
in a Hamiltonian approach of glueballs would agree with theC = − lattice spectrum.

Massive representations have more degrees of freedom that massless ones. In the case at hand,
a longitudinal component would be naively added for a massive interpretation of a gluon. However,
in view of the results outlined above, the gluon behaves intrinsically a massless particle although it
obeys a massive dispersion relation.

In quantum field theory, bound states are described by interpolating currents. Since the cur-
rents are build out of gluon fields (or field strengths) with only two degrees of freedom, it is then
natural to include only two degrees of freedom for the constituent gluons in effective models. I al-
ways compared to lattice results due to the lack of clear experimental candidates. I concluded that
only two gluonic degrees of freedom are needed to reproduce numerical simulations of correlators
but it remains only valid for quarkless QCD. The inclusion ofquarks induces mixing with mesons
states with all the problems it implies [2, 32]. But, with or without quark, if we still believe in
the description of bound states in term of interpolating currents, we have to consider two gluonic
degrees of freedom in effective approaches although the gluon might gain a mass.
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