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1. Introduction

Lattice QCD allows to compute a large number of hadronic matrix elements. On the other
hand, such calculations do not reveal what are the vacuum field configurations which dominate
specific matrix elements. In principle, models based on a a priori selection of a family relevant
vacuum fields - e.g. instanton, monopoles, vortices - allow to investigate the role played by such
fluctuations in different processes. For example, this way it has been possible to show that in-
stantons play an important role in the chiral dynamics of light quarks[1,2], but do not lead to
confinement of heavy quarks.

The main problem of instanton approaches is that the semiclassical approximation leading to
the dilute instanton gas picture is intrinsically inconsistent in QCD. This flaw has been euristically
circumvented by describing the QCD vacuum as an interacting instanton liquid, rather than a dilute
gas [3]. However, this way, new problems emerge. In fact, one needs to derive the interaction
between pseudo-particles including quantum corrections. On the other hand, it is not clear how
to consistently generalize the instanton picture to include additional purely quantum degrees of
freedom, which are responsible for confinement, without spoiling the semiclassical arguments.

In this talk we address these problems. We present a recently developed formalism which
allows to consistently express the partition functions in terms of an arbitrary family of vacuum
fields (not necessarily instantons) and compute the corresponding effective interaction. If the fam-
ily of vacuum fields is parametrized by a set of collective coordinates, the infinite-dimensional
Euclidean path integral is reduced to the canonical partition function of a finite system. Applica-
tions to QCD are currently under investigation. In this talk we test the method determining the full
non-perturbative instanton-antiinstanton for a simple toy model: the quantum mechanical system
described by a particle moving in a one-dimensional double well potential.

2. Effective Interaction and Microscopic Dynamics

Before describing the method and its applications, we briefly illustrate how the multi-instanton
effective interaction can be used to gain information on microscopic dynamics of correlation func-
tions. These considerations apply to any Quantum Field Theory but, in order to simplify the dis-
cussion, in this section we will consider the QCD case.

We start by expressing the path integral in terms of instantons coordinates γl , while all other
field configurations are integrated out

ZY M =
∫

DAµ exp
{
−1

4
Ga

µνGa
µν

}
(2.1)

≡
∫

dγ1 . . .
∫

dγk exp
{
−F(γ1, . . . ,γk)

}
. (2.2)

where F(γ) is the multi-instanton effective interaction. Given a matrix element

〈Ô[Aµ ]〉=
∫

DAµ O[Aµ ] e−SY M [Aµ ]∫
DAµe−SY M [Aµ ] . (2.3)

—for example the Gluon condensate, or the Topological Susceptibility—, we can perform pa-
rameter free approximate calculations using F(γ) itself. In fact, if multi-instantons configurations
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Ãµ(γ) are the relevant degrees of freedom driving the dynamics of the operator O[Aµ ], this can be
approximated to O[Aµ ]' O[Ãµ(γ)] and from Eq.(2.2) we obtain

〈Ô[Aµ ]〉 '
∫

∏
k
l=1 d γl O[Ã(γ1, . . . ,γk)] e−F(γ1,...,γk)∫

∏
k
l=1 d γl e−F(γ1,...,γk)

. (2.4)

By comparing the value of the finite dimensional integral in Eq.(2.4) —which can be performed
numerically— with the correct value of the matrix element given by lattice calculations or exper-
iments, we can determine whether instantons —or other gauge field configurations— are the rel-
evant set of degrees of freedom for the non-perturbative dynamics of the matrix element 〈Ô(Aµ)〉
and hence obtain qualitative informations on the role of instantons in its microscopic dynamics.

3. From Lattice Simulations to Effective Interaction

In this section we explain how to define and compute the effective potential for a family of
vacuum configuration x̃(t;γ) parametrized by a set of collective coordinates γ: in the specific case
of QCD, γ can be thought to represent instantons positions, sizes and color orientations, and possi-
bly the collective coordinates of other types of field configurations. In order to define the effective
interaction F(γ), we have to introduce the integral over the collective coordinates in the path inte-
gral

Z =
∫

Dx(t)e−S[x(t)]. (3.1)

we do so by decomposing every field x(t), in two orthogonal components

x(t) = x̃(t;γ)+ y(t), (3.2)

the first component —x̃(t;γ)— belongs to the manifold M parametrized by the curvilinear coor-
dinates γ; the second component —y(t), which we call ”fluctuation field”— is defined as the field
orthogonal to the tangent space of the manifold M , in the point γ̄∫

dt y(t)gγi(t; γ̄) = (y ·gγi(γ̄)) = 0; ∀i = 1, . . . ,k (3.3)

gγi(t;γ) = ∂γi x̃(t;γ), (3.4)

where {gγi(t; γ̄)} is an orthogonal basis of the tangent space, see Fig.(1).
The separation of the ”fluctuation fields” y(t) from the family of configurations x̃(t;γ) enables us

to rewrite the path integral as

Z =
∫ k

∏
l=1

dγl

∫
Dy

(
∏

i
δ

(k)(y ·gγi(γ̄)

) ∣∣∣∣det
i j

(
gγi(γ̄) ·gγ j(γ)

)∣∣∣∣ e−S[x̃(t;γ)+y(t)], (3.5)

≡
∫ k

∏
l=1

dγl exp{−F(γ)} (3.6)

where F(γ) is the effective interaction of the vacuum fields x̃(t;γ), and is defined as

F(γ) =−

{
log
∫

Dy

(
∏

i
δ

(k)(y ·gγi(γ̄)

) ∣∣∣∣det
i j

(
gγi(γ̄) ·gγ j(γ)

)∣∣∣∣ e−S[x̃(t;γ)+y(t)]

}
. (3.7)
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γ1 

γ2 

x̃(t; γ)

x(t)

y(t)

Figure 1: Pictorical representation of the projection of the field x(t) onto a tangent space of the vacuum field
manifold M . x(t) is represented by a point in this picture. The constraints (3.3) imply that the fluctuation
field y(t) is perpendicular to the plane tangent to the manifold in the point of the curvilinear abscissas γ = γ̄ .

We notice that the partition function (3.6) is independent on the choice of the point γ̄ by contruction;
on the other hand the effective interaction F(γ) and vacuum expectation values of operators (2.4)
may in principle depend on such a parameter. However, it can be shown that1 such a dependence
is generated only by the projection of paths which contain very large fluctuations y(t). Hence, if
the vacuum fields x̃(t;γ) dominate the vacuum expectation values of operators Ô(t), this will be
independent on the choice of γ̄ . This condition can be verified by comparing the results obtained
projecting onto different points of the manifold.

We now show how to evaluate the effective interaction F(γ). We are going to use lattice simu-
lations, similarly to what is done in statistical physics for calculating the free energy of the reaction
coordinates of a given system. We generate a set of statistical representative lattice configurations
and we reconstruct numerically the profile of the effective interaction by counting the occurences
of the set of collective coordinates. This is done using a projection technique which follows three
steps:
1) Every configuration x1(t), . . . ,xN(t) generated with lattice simulations is projected onto the tan-
gent space of the vacuum manifold M .

Ψi(x j) = (gi(γ̄) · x j); ∀i = 1, . . . ,k; j = 1, . . . ,N. (3.8)

where Ψi(x j) are k functional of the fields x j(t).
2) Then we define Φi(γ), k function of the curvilinear coordinates γ , by projecting the vacuum
manifold M , on the tangent space

Φi(γ) = (gi(γ̄) · x̃(γ)); ∀i = 1, . . . ,k. (3.9)

3) Eventually, due to the orthogonality conditions in Eq.s(3.3), for every lattice configuration x j(t)
we can construct a system of k equation for k unknowns γi, by equating the functionals Ψi(x j) in

1For a complete discussion we refer to our upcoming paper [4].
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Eq.(3.8) with the functions Φi(γ) in Eq.(3.9)
Ψ1(x j) = (g1(γ̄) · x j) = (g1(γ̄) · x̃(γ)) = Φ1(γ)

. . .

Ψk(x j) = (gk(γ̄) · x j) = (gk(γ̄) · x̃(γ)) = Φk(γ) ; ∀ j = 1, . . . ,N.

(3.10)

Each system of equations generated by a given configuration x j has a set of curvilinear coordinates
{γi[x j]} as a solution. By counting the occurence of each set of {γi[x j]} one can then reconstruct
the probability distribution P(γ) of the collective coordinates and hence the effective interaction
F(γ), given by

F(γ) =− log[P(γ)] (3.11)

The validity of this projection tecnique will now be tested on the simplest model presenting a non
trivial vacuum structure.

4. Double Well

We now discuss the applications of our method to the quantum mechanical system described
by a particle moving in a one-dimensional double well potential

U(x) = mα
(
x2−β

2)2
, (4.1)

where m is the mass of the particle. We consider only paths with periodic boundary conditions

xi = x f =−β ( or equivalently: xi = x f = +β ). (4.2)

The vacuum field manifold M for this model is the one generated by the superposition of N instan-
tons and N antiinstantons. The collective coordinates are simply the Euclidean time coordinates of
the pseudo-perticles γ1 = t1,γ2 = t̄1, . . . ,γ2N−1 = tN ,γ2N = t̄N and the path integral may be written
as

Z[T ;−β ,−β ] =
∫

dt1,
∫

dt̄1 . . .
∫

dtN
∫

dt̄N e−
1
h̄ F(t1,t̄1,...,tN ,t̄N) (4.3)

If we consider the barrier to be infinitely high α → ∞ the instanton size vanishes and the both
instanton and antiisnstanton will behave as non-interacting quasi-particles: this is the Dilute In-
stanton Gas Approximation (DIGA) regime and the multi-instanton effective interaction F(t1, ..t̄N)
has an analitical expression. On the other hand, for a low barrier the DIGA fails to be a good ap-
proximation: in this regime, the vacuum fields behave as an interacting liquid and only single pair
instanton-antiinstanton interactions are important

F(t̄1, . . . , t̄N)'
N

∑
i=1

F IA
2 (t̄i− ti)+FAI

2 (ti+1− t̄i), (4.4)

where F IA
2 (FAI

2 ) express the two-body instanton-antiinstanton (antiinstanton- instanton) correla-
tions 2. We then integrate all but a single instanton-antiinstanton pair, and rewrite the path integral
as

Z[T ;−β ,−β ] =
1
2

(∫
dt ′
∫

dt e−
1
h̄ F IA

2 (t ′−t))+
∫

dt
∫

dt ′ e−
1
h̄ FAI

2 (t ′−t)
)

. (4.5)

2Eq. (4.4) can be generalized to include higher-order (e.g. three-body, four-body, etc...) correlations.
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In order to extract the instanton-antiinstanton effective interaction F IA
2 we then parametrize a

generic configuration x(t) using the sum ansatz for an instanton-antiiinstanton pair,

x(t) = x̃IA (t; t1, t2)+ y(t) (4.6)

= −β

{
1− tanh

[√
2α β (t− t1)

]
+ tanh

[√
2α β (t− t2)

]}
+ y(t) (4.7)

where y(t) is a configuration of boundary conditions y(±T/2) = 0, and t1 and t2 are the coordinates
of the two pseudoparticles, in the Euclidean time axis. We also define the variable ξ = t2− t1
which represents the "relative distance" between the instanton and antiinstanton: note that Eq.(4.5)
implies

F2(t1, t2) = F2(t2− t1)≡ F2(ξ ), (4.8)

We now recall that the fluctuation field y(t) have to fulfill the orthogonality conditions (3.3), which
is enforced in a specific point γ = γ̄ of the manifold M . The vector basis of the tangent space of
the manifold defined by our ansatz (4.6), for an arbitrary point γ = (t̄1, t̄2) is

gt1(t; t̄1, t̄2) = ∂t1 x̃S2(t; t1, t2)
∣∣∣∣
t1=t̄1,t2=t̄2

=−
√

2αβ
2sech2

[√
2αβ (t− t̄1)

]
(4.9)

gt2(t; t̄1, t̄2) = ∂t2 x̃S2(t; t1, t2)
∣∣∣∣
t1=t̄1,t2=t̄2

=
√

2αβ
2sech2

[√
2αβ (t− t̄2)

]
(4.10)

Now that the fields x̃ and y have been defined, we are ready to determine the effective interaction
F IA

2 (ξ ) using the projection tecnique presented in Section 3. In order to show that our method
reproduces the correct result, we first consider the two instanton-antiinstanton interaction in the
DIGA regime, which has analytical solution

F IA
2,DIGA(ξ ) = (κT −1) log(T −ξ )+ const, (4.11)

where k is a constant which can be interpreted as the instanton density. By sampling and projecting
equilibrium configurations generated with the probability distribution e−F IA

2,DIGA we obtain the results
in Fig.(2): the dashed line is the expected theoretical result. The DIGA approximation holds only
at large instanton-antiinstanton distance, i.e. for ξ much larger than the instanton size —which is
0.26, in these units—. In this regime our projection tecnique reproduces the correct result; in fact,
a linear fit of the data for ξ > 1 yields a slope of 0.32± 1, in excellent agreement with the exact
theoretical result, which is 0.31. We now consider quantum fluctuations and reconstruct the full
non-perturbative effective interaction for high and low barrier: Fig. (3) shows the results of such
a non-perturbative calculation for a well with α = 1 (low barrier) and α = 7 (high barrier). As
one can see, at small ξ —i.e. when instanton and antiinstanton overlap— quantum interactions
induce an effective repulsion, resulting in a minimum of the effective interaction at finite postitive
ξ : this effect is enhanced in the lower barrier. In such a regime, the vacuum behaves like a one-
dimensional liquid, rather than as an ideal gas; we note that this is precisely the physical picture
underlying the instanton liquid model of the QCD vacuum. For higher values of ξ the effective
interaction starts to raise and eventually reaches the dilute gas limit.
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Figure 2: Non-perturbative calculation of the effective interaction F2(ξ ) for a dilute instanton gas with
α = 7, m = 1, β = 1 in a volume T = 200.
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Figure 3: Non-perturbative calculation of the effective interaction F(ξ ) for α = 1 (left panel) and α = 7.

5. Conclusions

We presented a novel approach which allows to express quantum mechanical path integrals, in
terms of few ordinary integrals over a set of low-energy variables, which parametrize the manifold
of the relevant vacuum field configurations. The method consists in reconstructing numerically
the effective theory for a given family of vacuum fields, using lattice simulations. In this work
we discussed the results for the instanton-antiinstanton effective interaction in the one-dimensional
double well potential. The extension of the present formalism to instantons in QCD is in progress
and will be presented in our upcoming papers.
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