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1. Introduction: the Casimir scaling hypothesis

The explanation of how quark and gluon confinement arises in non-Abgéiage theories
remains a challenging problem. To make the problem simpler, one can leashgnauhical quark
degrees of freedom and ask e.g. about the behavior of potentialsdvestetic color sources from
different representations of the gauge group, but even this questiamadt have a fully satisfactory
answer. The potentials are expected to behave differently in three segfi@uark-antiquark dis-
tances (the situation is sketched in Hig. 1 for the case of SU(2)). Atdistainces the interaction is
governed by perturbative one-gluon exchange and the potentialoatentb-like. At asymptotic
distances, the color charges of higher-representation static soarcbs screened by an appropri-
ate number of gluons; in SN gauge theory, potentials of all zelbality representations become
asymptotically flat, while asymptotic string tensions for representations withenohzality will
be the same as for the lowest representation with the $ualdy. Most interesting is the region
of intermediate distances, from the onset of confinement to the onsetesingng. There string
tensions depend on color-charge representations in a more intricatehatytependence carries
an imprint of the underlying mechanism of confinement.

It was argued that intermediate string tensions of potentials between hagresentation
guarks and antiquarks should be proportional to the quadratic Casim#.Casimir scaling hy-
pothesidfll] can be supported e.g. by largefactorization [2] or dimensional reduction arguments
[B-B]. Regardless of whether one is convinced by these argument,d€asimir scaling is an
experimental fact: it was observed convincingly in numerical simulationsthf 8U(2) and SU(3)
lattice gauge theories (most recently in Ref§. [p - 8]).

Any viable model of the confinement mechanism should be able to explain lastm{ scal-
ing at intermediate anbl-ality dependence at large distances. It is not easy at all to understand
these effects in terms of vacuum fluctuations which dominate the QCD funkiivegral [3].

In the present contribution | will first discuss a simple model of how (axiprate) Casimir
scaling andN-ality dependence arise within the center-vortex picture of color confinermed then
extend the model to non-Abelian theories with trivial center (Sediion 2) plsiic prediction is

Static quark-antiquark potential, SU(2) gauge theory
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Figure 1: Sketch of the expected behavior of static potentials in $gé2ge theory.
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Casimir scaling for potentials in (center-trivialp@auge theory. | will report results of numerical
simulations that confirm the prediction (Sect[gn 3). Finally, | will outline a réseggestion for
an approximate wave-functional of the Yang—Mills theory that incorper@eame) elements of the
proposed vacuum model (Sectidn 4). Secfion 5 summarizes conclusions.

2. A simple model of Casimir scaling and color screening

N-ality (or “representation class” in mathematical language) is related to thefdramation
properties of SU)-group representations with respect to the group cenier,The N-ality de-
pendence of string tensions of different-representation potentials/aipéatic distances can be
easily understood in terms of the picture of the QCD vacuum as a centexwandensate, where
the dominant field configurations are directly related to elements of the genterd1p]. The
asymptotic string tensioa;, can be extracted from the area-law fall-off of Wilson loops inrthia
representation of the color group. | will illustrate the idea on the SU(2)mritsi representations
are labeled by a “spin” index with half-integer or integer values. Let us assume the vacuum is
filled with percolating thin center vortices and divide the Ia8nto small patches (with unit area
for simplicity). Let p denote the probability that a patch is pierced by a vortex and assume pgercing
are random and uncorrelated. It is then a simple exercise to show that:

Wi(%) ~ [p' (—1)2j +(1-p)- (+1)]<‘57(‘5)

o/ (%) ... minimal area of the loof’, (2.1)
2p ... half-integerj,

2.2
0 ... integerj. (2:2)

oj=—In[1-p+(-1)?p| = {
The asymptotic string tensions are zero for all integegpresentations (i.e. those withkality, or
“biality”, equal to 0), and nonzero and equal for all half-integdmwith N-ality equal to 1). The
argument can simply be extended to arbitrisiry 2.

An explanation of Casimir scaling at intermediate distances within the centiexvmodel
was suggested by Faber et l][11]t is attributed to the fact that center vortices in the QCD
vacuum do have finite, relatively large thicknési$.the cross-section of the vortex with the plane
of the Wilson loop is fully outside the loop, the vortex does not influence itsevalluit is fully
inside the loop, the value is multiplied ly-1)2 in SU(2). The effect of a vortex whose core is
only partially contained in the area of the loop is modeled by multiplication of the lg@pdroup
element (in theg-th representation) that depends on a certain angd@d has random orientation
in color space. The angle interpolates between O (if the core lies fully outgdeop) and 2r (if
it lies fully inside). This very simple model predicts, as abofe] (2.2) fongaytic distances, and
(to a good degree of approximation)

oj~j(j+1) ... Casimirscaling (2.3)

for intermediate distances. The model can be generalizddt@, at the price of introducing more
parameters (angled).

1A related proposal was advanced long ago by Cornwall in a procesdangribution EIZ].
2Independent ways of estimating the thickness of center vortices aresséte.g. in Section 4 of R13].
3See Ref.4] for particular proposals for SU(3) and SU(4).
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Recently, much attention has been paid to the Yang—Mills theory with styaGge group[[15].
The exceptional Lie group £has a trivial center; the center of its universal covering group is also
trivial, and there seems to be no reason to believe that the group centeraplaymportant role
in G2 YM theory at all. The theory is at mosémporarily confining, since potentials for static
color charges from any representation, including the fundamentalronst be asymptotically
flat. The reason is that any color charge, even a “quark” from thdiriénsional) fundamental
representation of &can be screened by a bunch of “gluons” (from the 14-dimensionalradjo
representation). This fact does not really contradict the centenwodefinement scenario: G
does not possess nontrivial center vortices, and therefore the simgiring tension is zero. But
even in the G gauge theory, one expects that the static potentials do grow linearly oestaénc
range of distances, from the scale where perturbation theory bre#ies tmset of screening. The
linear rise of the fundamental potential in this intermediate region was demiasinanumerical
simulations [15].

Dimensional reduction can be invoked to argue that evenilY K theory one would expect
Casimir scaling of potentials at intermediate distances. But if, in the langudiggdtonfigura-
tions, finite thickness of center vortices was responsible for Casimir séalBig(N), what should
it be attributed to in a theory with trivial center? A common origin of Casimir scalimgdenter-
poor” and “center-rich” gauge models was suggested in Rf. [16]edtnded and improved the
model of Ref. [I]L]. We assume the Yang—Mills vacuum state has a domaitus&with the color
magnetic flux in each domain quantized in units of the gauge group centetifilitor not), and
Casimir scaling results from random spatial fluctuations of the flux in eactaun

In this model, it is assumed that if we take a 2D slice of the four-dimensionameluve
can split it into domains (“patches”) of a typical ar8g. Within each domain color magnetic
fields fluctuate randomly and (almost) independently, with a short lengthraélabon|. Each
domain contains small independently fluctuating subregions ofléarealy. The only constraint
on fluctuating fields bounds the total magnetic flux over each domain to porrédo an element
of the gauge-group center. In SU(2), there are domains of the cemtex type and of the vacuum
type. The former correspond to the nontrivial center elemehtand represent a cross section of
a thick center vortex; the latter carry a zero total magnetic flux. draltdomains will be of the
vacuum type, since the center contains the identity element only.

I will only summarize conclusions of the model: If the center of the gaugemcontainsN
elements, there afétypes of domains enumerated by the vatue{0,1,...,N — 1}, each assumed
to appear with a probabilityy centered at any given plaquette in the plane of the loop. The effect
of a domain (a 2D cross section of tkin vortex) on a planar Wilson loop is to multiply the loop
by a group element

g(a¥, )= exp[ia“‘) Jﬂ 7 (2.4)
where{#} are generators of the Cartan subalgebrajs a random element of the group, and
anglesd ® depend on the location of the vortex/domain with respect to the loop. If theidasna

all contained within the loop area, then

exp [i&(k) J?} =2z, (2.5)

4
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wherez, is thekth center element, is the unit element. If the domain is outside the loop, it has no
effect, i.e.

exp[i&“‘)-%ﬂ =1. (2.6)
For a Wilson loop from the representatiprthe averaged contribution of a domain is
1 S
(k) ) ig® .
G (a'™) g, d,Xf <exp[|a %]) lg,, (2.7)

whered; is the dimension of the representatioandl 4, is thed, x d, unit matrix.

One further assumes that probabilities to find domains of any type centetwd different
plaguettes are independent, and that for loops smaller than the typicaf 8iredomain, the r.m.s.
of phasesx is proportional to the area of the vortex contained in the interior of the lody@n;T
both in SUN) and G, the static potentia¥; (R) of the representationwill be linearly rising for
distance$ < R < /Aq, With a string tension approximately proportional to its quadratic Casimir:

o ~C; ... intermediate distances. (2.8)

For very large Wilson loops most vortices will be contained within the loop, tees@e phases are
proportional to the corresponding total magnetic flux through the domairtharprediction is, for

R> /Aq,
o ~Flk,{fk}] ... asymptotic distances (2.9)

for SUNN), wherek; is theN-ality of the representation and
o, =0 ... asymptotic distances (2.10)

for the & gauge group.

3. Casimir scaling in G, gauge theory

The described domain model of the YM vacuum with magnetic disorder, camjaimly a
few adjustable parameters, predicts Casimir scaling of higher represargatentials at interme-
diate distances not only for SN, but also for G gauge theory. The prediction can be verified
or disproved in numerical simulations of the theory in lattice formulation. This isiirciple a
straightforward task, but not cheap fog:Gimulations are quite demanding on computer resources,
determination of string tensions requires all machinery developed in théopasiculating poten-
tials (anisotropic lattices, ground-state overlap enhancement, smeariegophe bits and pieces
of information from group theory. Technical details of our calculationsltwafound in Ref.[[17],
| will present here only a subset of representative results.

We simulated G lattice gauge theory with the Wilson action on anisotrdpic (2L) lattice:

S= —g { z Re Tr[Ro(x)] — 1

x>0 0xi>T>0

Re Tr[R) <x>1} (3.1)

with the bare-anisotropy paramefgrtuned so that the physical anisotrapy: ab™s/af™Sequals 2.
To increase overlap of the trial quark-antiquark state with the ground statesed in the computa-
tion of Wilson loops spatial links smeared by a@&neralization of the stout smearing methjod [18].
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Most of our results come from $4 28 lattice at three values of the couplifig= 9.5,9.6,9.7 on
the weak-coupling side of the crossover region observed in Rét. [15]

The potential between a static quark and antiquark from the represen{étioof the &
group can be determined from values of Wilson lodyg, (r,t) by a fit of the form

— InW{D}(r,t) = C{D} —i—V{D}(I’) -t (3.2)

in an appropriate intervdkmin, tmax). The resulting potentials are then parametrized by the usual
Coulomb plus linear form:

Vip(r)=c —@jta r (3.3)
{D} {D} r {o} I+ :

G, irreducible representatiod®} are labeled by two Dynkin coefficient;, A;], the dimen-
sion of the representation is given y][19]:
9
D= 5((1-06)(G-6B) (5 4), (3.4)
wherely = £(14 A1), £, = §(4+ A1+ 3A;), andls = $(5+2A1 4+ 3)z). The ratio of eigenvalues
of the quadratic Casimir operator {s[19]:

1 14
d{D}z:4<£§+£§+£§—3>, (3.5)

whereCr is the quadratic Casimir for the fundamental representation.

Results for string-tension ratios for color sources from fige&presentations are summarized
in Table[], potentials are displayed in F§j. 2 for= 9.6 and 97. Fundamental and adjoint po-
tentials for all three coupling8 are shown together in Fif] 3, expressed in physical units defined
by the fundamental string tension. Our results convincingly demonstrapeofamate) Casimir
scaling for static potentials between color charges from various repiegwms of G.* The agree-
ment between measured values of intermediate string tensions with predicsetdn values of
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Figure 2: [Left:] Potentials for different representations vs. tfimensionless; 14° x 28 lattice,3 = 9.6.
[Right:] RatiosVp,/Vk for different representationfD} as functions of the dimensionless 143 % 28
lattice, 3 = 9.7. Horizontal lines show Casimir-scaling predictions.

“4Casimir scaling of G potentials has recently been seen also in numerical simulationslaft@e gauge theory in
(2+1) dimensions[[30].
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B A 27y {64y {77} {77}
9.5 1.88(4) 2.15(5) 3.1(1) —  —
9.6 1.94(4) 2.24(6) 3.35(8) 3.8(2) 4.6(2)
9.7 1.96(6) 2.28(7) 3.5(1) 4.0(2) 4.9(2)
cS 20 2333 35 40 5.0

Table 1: Ratiosoypy /o for the adjoint (labeled), {27}, {64}, {77}, and{77'} representations. The last
line is the Casimir-scaling prediction.
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Figure 3: The fundamental (left) and adjoint (right) representaatential in physical units, all thre@
values, from 12 x 28 lattice. (The constamt cf. Eq. (3.B), is subtracted.)

quadratic Casimirs is quite striking; they differ by at most 10-15%, and tmsaedly be just a
numerical coincidence. The results of course cannot prove that thel mkestribed in Sectiofj 2 is
right, but combined with the solid evidence for Casimir scaling in SU(2) an@BltHey provide

support for its main ingredients (common for all groups) — a magneticallydbsed vacuum with

a domain structure.

4. A suggestion for an approximate vacuum wave-functionalfoyang—Mills theory
in (24 1) dimensions

Can one derive (at least some) elements of the described picture firpriitciples? Re-
cently, we have suggested an approximate form of the vacuum wagtefioal which solves the
SU(2) Yang-Mills Schrédinger equation in the temporal gafige $21]:

ab

B°(y)
Xy

1

V —92—/\0+mz>

HereB?(x) = F3(x) is the color magnetic field strengt#? the covariant laplacian in the adjoint
representation:

Wo[Al=exp —% / d?xd?y Ba(x)< (4.1)

5y,x+R

2 ~
(~22)5 = kzl [25ab5xy — U8, o — U (x— k) 5y,x—d , (4.2)

SExpressions below are all assumed to be properly defined on a latticdattiite spacing serving as regulator, but
for simplicity | will mostly use continuum notations.



Vacuum structure and Casimir scaling in Yang—Mills thesrie Stefan Olejnik

whereZ4(x) are the link fields in the adjoint representatidg,denotes the lowest eigenvalue of
(—22), andmis a constant (mass) proportionalgd~ 1/f.

The proposed wave-functiondl (4.1) is reminiscent of Samuells [2&8]difierence is that in
his proposal a single free parametej replaces ouf—Aq + n?) in the denominator. The reason
for subtracting the lowest eigenvalue from the operétoe?) is that our numerical simulations
indicate that its spectrum might diverge in the continuum limit.

This wave-functional has quite a few attractive properties:

1. Inthe free-field limit § — 0), the covariant laplacian turns into ordinary laplaci®andm
go to 0, and¥y[A] becomes the well-known vacuum wave-functional of electrodynamics:

ab
WolA] = exp{—; / d?xd?y [0 x A3(x)] (\/5_?) [0 x Ab(y)]} . (4.3)
Xy

2. Eq. (4.1) is a good approximation to the true vacuum also in completelyetiffeorner of
the configuration space, namely if we restrict to fields constant in spaceaaying only in
time. In the large-volume limit the solution of the YM Schrddinger equation in thed &g
up to 1/V corrections:

Ly Aix) (A x Ay

2 \/'&1-/&1—%:&2"&2

and exactly the same expression follows fr¢m](4.1) assurigﬁlgz] > m,/o.

Yo =exp—VRy] =exp , (4.4)

3. If we divide the field strengtB?(x) into “fast” and “slow” components, the portion of the
(squared) vacuum wave-functionalBgo,, is approximately

ol exp)| - [ 6P B () Bl @5

This is exactly the probability measure for YM theory in two Euclidean dimensiwhgh

(i) is confining form > 0, and (ii) exhibits Casimir scaling for string tensions of all color-
charge representations. The fundamental string tension is easily comgmitgedf) =
3m/(4B). The last expression can be used to fix the valumah Eq. (4.1) at a giver
from the known value 06k

4. Confinement requireato be larger than zero; if one takesn the wave-functiona( (4 1) as a
variational parameter and computes (approximately) the expectation vahe\dng—Mills
Hamiltonian, one finds that non-zero (and finite) valuena$ energetically preferred.

5. If we fix the massn in the wave-functional to get the right string tension at a giveng,
we can test our proposal by calculating e.g. the mass gap of the theorlyaWgroposed
a recursive procedure for generating independent lattice confiigsawith the probability
distribution given by the square of the wave-functiofjal](4.1), the intedeeader should
consult Ref.[21] for its detailed exposition. We call two-dimensional lattmafigurations
obtained in this way “recursion lattices”. One can compute various olddess/avith these
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Figure 4: Mass gaps extracted from recursion lattices at variousdatbuplings, compared to"Qlueball
masses in 2 dimensions obtained in REI [24] (denoted “¢xi’standard lattice Monte Carlo methods.

lattices, and compare results with “MC lattices”, i.e. two-dimensional slices ofdattjen-
erated in a fulD = 3 lattice Monte Carlo simulation. To extract the mass gap, one computes
the correlator

apa brb ana 2
9(x—y) = ((B'B*)x(B'B")y) — (BB ) (4.6)
and determines the mass gdy fitting the result to the form
2 e MR
(const. 1+ iMR) R R=|x—yY| (4.7)

Fig. [4 shows our values for the mass gap veiBuextracted from recursion-lattice data. It
turns out that, given the asymptotic string tension as input, we can compute fisegaga
fairly accurately from our wave-functional. The discrepancy fromnkéoCarlo results of
Meyer and Tepel[24] for the'Oglueball mass are at the level of at most a fen6) percent.

6. The YM wave-functional in Coulomb gauge can be obtained by restritti@egemporal-
gauge wave-functional to transverse gauge fields. We have computedltnieCoulomb
potential and the Coulomb-gauge ghost propagator using recursidv@ndittices and the
results are in reasonable agreement, see Jeff Greensite’s talk at thihvop2B].

The dimensional reduction fornj (#.5) at large distances implies an areallagffffor large
Wilson loops, and also Casimir scaling of higher-representation Wilson Iddysquestion is how
Casimir scaling turns intdN-ality dependence, how color screening enters the game within this
setting. It may be necessary to introduce into our wave-functional adalitierm(s), e.g. a gauge-
invariant gluon-mass term advocated by Cornwal] [25]. Howeverethee indications that terms
needed for color screening might be contained in our simple wave-fuat@on would appear as
corrections to the dimensional-reduction fofm)(4.5).

Let us write the lattice vacuum statéy[U] in the form exgR[U]). Greensite[]3] developed
a strong-coupling technique for calculatiRfJ] in Hamiltonian lattice gauge theorRU] is ex-
pressed as a sum over spacelike Wilson loops and products of loops lattitte, schematically:
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) el eal T+ el T+ o]

contours
+ larger contours
(4.8)
The first few coefficients; for SU(2) lattice gauge theory if2+ 1) dimensions were computed in
Ref. [26] and for smoothly varying fields one gets:

Wo[U] :exp{—é/dzx (akoB? — a%kB(—2%)B+...) |, (4.9)

wherea is the lattice spacingsp = %Co +2(c1+Cp+C3), Ko = 71101, Co is 0(B?), andcy, cp, c3 are

0 (B*). The leading correction to dimensional-reduction form is contained in thegeoportional

to k2, and comes from the % 2 loop in R[U]| proportional toc;. If we evaluate the adjoint Wil-
son loopWi (%) in the strong-coupling expansion, theterm provides the leading perimeter-law
contribution, sketched in Fid] 5, proportional(m/Z)‘@(%)*“. So the term that gives the leading
correction to the dimensional-reduction form is also responsible forsicigef adjoint loops.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5: Tiling/screening an adjoint Wilson loop byx12 rectangles. The loop is denoted by a heavy solid
line.

If we now work out the leading correction to the dimensional-reduction {@&) by expand-
ing the kernel in our wave-functiondl (#.1), we get:

2n?
One should note a striking similarity of the second term in Eq. [4.10) taskerm in Eq. [4.P).
This gives some hope that the proposed approximate wave-functjolai{dy in fact not only in-

corporate Casimir scaling of string tensions at intermediate distances, bdt-algty dependence
in the asymptotic region.

1 ~ 92—
|Wol? = exp [_m/dzx <leowBsIow— Bsiow OleoW+...>} . (4.10)

5. Conclusions

e Casimir scaling is a natural outcome of a model of the QCD vacuum as a mediuhidh w
color magnetic fields fluctuate almost independently and are only weaklyramesl by the

10
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condition that the total flux through a cross-section of the domain comesgo an element
of the gauge group center.

o Lattice data show that string tensions of higher-representation potentiateratediate dis-
tances satisfy Casimir scaling to surprising accuracy for SU(2), SE(®),even G gauge
theory.

e Some elements of the model are (or may be) contained in the simple approxinnatef the
confining Yang—Mills vacuum wave-functional {&+ 1) dimensions proposed in Ref.]21].

Acknowledgments

| thank Jeff Greensite, Kurt Langfeld, Ludovit Liptdk, Hugo Reirditaand Torsten Tok for

collaboration on topics covered in the present contribution. | am gratefléffoGreensite for
comments to the manuscript. | would also like to express gratitude to Mike Corfovathe
invitation to the interesting and stimulating workshop in Trento.

References

[1]

(2]

(3]

[4]
[5]

[6]

[7]

(8]

(9]

[10]

L. Del Debbio, M. Faber, J. Greensite, and S. Olej@&simir scaling vs. Abelian dominance in QCD
string formation Phys. RevD 53 (1996) 5891 fir Xi v: hep- | at / 9510028

J. Greensite and M. B. HalperBuppression of color screening at largehys. RevD 27 (1983)
2545,

J. P. GreensitegCalculation of the Yang—Mills vacuum wave functigmdlicl. PhysB 158 (1979) 469;
Large scale vacuum structure and new calculational techesgn lattice SU(N) gauge thegmucl.
Phys.B 166(1980) 113.

P. OlesenConfinement and random fieldsucl. PhysB 200(1982) 381.

J. Ambjgrn, P. Olesen, and C. Peters8tgchastic confinement and dimensional reduction 1.
Four-dimensional SU(2) lattice gauge thepNucl. PhysB 240(1984) 189;Stochastic confinement
and dimensional reduction 2. Three-dimensional SU(2)datjauge theoryNucl. PhysB 240
(1984) 533.

C. Piccioni,Casimir scaling in SU(2) lattice gauge thepBhys. RevD 73 (2006) 114509
[Br Xi v: hep- | at / 0503021]].

S. Deldar,Static SU(3) potentials for sources in various represaatet Phys. RevD 62 (2000)
034509 pr Xi v: hep-1 at/9911008]; A new lattice measurement for potentials between stati@BU(
sourcesEur. Phys. JC 47 (2006) 163 far Xi v: hep- | at / 0607024].

G. S. Bali,Casimir scaling of SU(3) static potentiaBhys. RevD 62 (2000) 114503
[Br Xi v: hep- | at/0006022].

V. I. Shevchenko and Yu. A. Simono@asimir scaling and models of confinement in Q@1. J.
Mod. PhysA 18(2003) 127 fr Xi v: hep- ph/ 0104135].

G. 't Hooft, On the phase transition towards permanent quark confinemird. PhysB138

(1978) 1; J. M. CornwallQuark confinement and vortices in massive gauge invariard Q\Gicl.
Phys.B157(1979) 392; and many others — see the review: J. Greefsiteconfinement problem in
lattice gauge theoryProg. Part. Nucl. Phys51 (2003) 1 fr Xi v: hep-1 at/ 0301023].

11


http://www.arxiv.org/abs/hep-lat/9510028
http://www.arxiv.org/abs/hep-lat/0503021
http://www.arxiv.org/abs/hep-lat/9911008
http://www.arxiv.org/abs/hep-lat/0607025
http://www.arxiv.org/abs/hep-lat/0006022
http://www.arxiv.org/abs/hep-ph/0104135
http://www.arxiv.org/abs/hep-lat/0301023

Vacuum structure and Casimir scaling in Yang—Mills thesrie Stefan Olejnik

[11] M. Faber, J. Greensite, and S. Olejriigsimir scaling from center vortices: Towards an
understanding of the adjoint string tensidPhys. RevD 57 (1998) 2603
[Br Xi v: hep-1at / 9710039.

[12] J. M. Cornwall,Finding dynamical masses in continuum QG K. A. Milton and M. A. Samuel
(eds.),Proceedings of the Workshop on Non-Perturbative Quanturor@hdynamicsBirkhduser,
Boston—Basel-Stuttgart 1983.

[13] R. Bertle, M. Faber, J. Greensite, and S. Olejkjortices, gauge copies, and lattice sizHEP
0010(2000) 007 pr Xi v: hep- | at / 0007043]].

[14] S. DeldarPotentials between static SU(3) sources in the fat-cevietices modelJHEP0101(2001)
013 [ar Xi v: hep- ph/ 9912428]]; S. Deldar and S. RafibakhsBpnfinement and the second vortex of
the SU(4) gauge groyPhys. RevD 76 (2007) 094508Hr Xi v: 0709. 1233 [ hep- ph]].

[15] K. Holland, P. Minkowski, M. Pepe, and U. J. Wiegceptional confinement i@, gauge theory
Nucl. PhysB 668(2003) 207 far Xi v: hep- | at / 0302023]; M. Pepe and U. J. Wies&xceptional
deconfinement is, gauge theoryNucl. PhysB 768(2007) 21 fr Xi v: hep- | at / 0610074]].

[16] J. Greensite, K. Langfeld, S. Olejnik, H. Reinhardil @ Tok, Color screening, Casimir scaling, and
domain structure irG; and SU(N) gauge theorieBhys. Re\D 75 (2007) 034501
[Br Xi v: hep- | at / 0609050]].

[17] L. Liptak and S. Olejnik Casimir scaling inG; lattice gauge theoryPhys. RevD 78 (2008) 074501
[BrXi v: 0807. 1390 [ hep-| at]]]; L. Liptak, Aspects of thermodynamics and confinement in the
lattice formulation of QCDPHD thesis, Institute of Physics, Bratislava 2009.

[18] C. Morningstar and M. J. Peardofinalytic smearing of SU(3) link variables in lattice QCBhys.
Rev.D 69 (2004) 054501fr Xi v: hep- | at/0311019].

[19] M. J. Englefield and R. C. Kindgsymmetric power sum expansions of the eigenvalues of disedra
Casimir operators of semi-simple Lie groygsPhys. A: Math. Gerll3(1980) 2297.

[20] B. H. Wellegehausen, A. Wipf, and C. Wozar; Gauge theories: Effective Polyakov loop models,
Casimir scaling and the gauge-Higgs phase diagr#atk of C. Wosar at the EMMI workshop
“Quarks, Hadrons, and the Phase Diagram of QCD”, St. Goay, Bl—Sept. 3, 2009,
http://crunch.ikp. physi k. t u- dar mst adt . de/ ghpd/ TALKS/ Wozar . pdf|.

[21] J. Greensite and S. OlejniRjmensional reduction and the Yang—Mills vacuum stat2-jnl
dimensionsPhys. Re\D 77 (2008) 065003dr Xi v: 0707. 2860 [ hep- 1 at]]).

[22] S. SamuelDn theOt* glueball massPhys. RevD 55(1997) 4189 fr Xi v: hep- ph/ 9604405].

[23] J. GreensiteAspects of confinement in Coulomb galgeroceedings ofnternational Workshop on
QCD Green’s Functions, Confinement and Phenomengms( QCD- TNT09) 017.

[24] H. B. Meyer and M. J. TepeGlueball Regge trajectories if2 4+ 1) dimensional gauge theorigs
Nucl. PhysB 668(2003) 111 [ar Xi v: hep- | at/ 0306019].

[25] J. M. Cornwall A conjecture on the infrared structure of the vacuum Schvgeli wave functional of
QCD, Phys. Re\D 76 (2007) 025012fr Xi v: hep-t h/ 0702054]].

[26] S. H. Guo, Q. Z. Chen, and L. LAnalytic calculation of the vacuum wave function for
(2+1)-dimensional SU(2) lattice gauge thepBhys. Re\D 49 (1994) 507.

12


http://www.arxiv.org/abs/hep-lat/9710039
http://www.arxiv.org/abs/hep-lat/0007043
http://www.arxiv.org/abs/hep-ph/9912428
http://www.arxiv.org/abs/0709.1233
http://www.arxiv.org/abs/hep-lat/0302023
http://www.arxiv.org/abs/hep-lat/0610076
http://www.arxiv.org/abs/hep-lat/0609050
http://www.arxiv.org/abs/0807.1390
http://www.arxiv.org/abs/hep-lat/0311018
http://crunch.ikp.physik.tu-darmstadt.de/qhpd/TALKS/Wozar.pdf
http://www.arxiv.org/abs/0707.2860
http://www.arxiv.org/abs/hep-ph/9604405
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(QCD-TNT09)017
http://www.arxiv.org/abs/hep-lat/0306019
http://www.arxiv.org/abs/hep-th/0702054

