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The Landau gauge lattice gluon propagator is discussed for different sets of lattices. Particular at-

tention is given to its infrared properties. Our results show that the lattice propagator can be made

compatible with either the decoupling-like or the scaling-like solution of the Dyson-Schwinger

equations. Furthermore, the analysis of the Cucchieri-Mendes bounds is performed considering

large volume simulations and the Oliveira-Silva ratios arecomputed. If the first do not give a

clear answer about the value ofD(0), the second method favors aD(0) = 0. Finally, the SU(3)

and SU(2) propagators are compared in the infrared. It comesout that the propagators are differ-

ent although the infrared exponents seem to be similar. The analysis suggests a scaling behaviour

D(0) ∼ N with the gauge group SU(N).
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1. Introduction

For a given quantum field theory the Green’s functions encodethe dynamical information. For
QCD, in particular, the computation of any Green’s function, such as the gluon propagatorD(q2),
over the entire momentum spectrum cannot rely on perturbation theory. In what concerns the gluon
propagator, in the past years, there has been a discussion about its infrared behaviour and its value
at zero momentum in the Landau gauge. The recent effort on computing D(0) comes from its
relation with the Gribov-Zwanziger gluon confinement mechanism, which impliesD(0) = 0, and
with the possibility of dynamical mass generation for gluons. The dispute is still going on and
involves both Schwinger-Dyson solutions and lattice QCD results.

The recent solutions of the Dyson-Schwinger equations havedifferent infrared behaviours. On
one side we have the scaling solution [1, 2] withD(0) = 0 and an infrared behaviour given by a pure
power lawD(q2) = (q2)2κ−1, with κ ∼ 0.595. On the other side we have the decoupling solution
[3, 4] (see also [5]) with a finite and nonvanishingD(0), with the value ofD(0) being related with
a dynamical generated gluon mass, and a plateau forD(q2) at low momenta.

The recent lattice simulations also show contradictory results. Indeed, large volume simula-
tions using the Wilson action and large lattice spacings, i.e. a∼ 0.18 fm or larger, show a gluon
propagator that agrees qualitatively with the decoupling solution. However, as we will see, a sec-
ond look at the lattice data seems to indicate that the solution D(0) = 0 is still compatible with the
lattice data — see below.

Here, we want to discuss on what the lattice simulations tellus about the infrared gluon prop-
agator and, hopefully, point towards a "favorite" value ofD(0). In the following, we will use
standard definitions for each of the quantities, which will not be shown here. The interested reader
can find the details for example in [6].

2. Lattice setup

Our discussion of the infrared gluon propagator in the Landau gauge uses lattice data for the
SU(3) gluon propagator from simulations with two different values of β , namelyβ = 6.0 and
β = 5.7, combining data generated at Coimbra with the data from theBerlin-Moscow-Adelaide
group [8]. Furthermore, the SU(3) data will be compared withthe large volumes, i.e. 804 and 1284

at β = 2.2, SU(2) propagator of the S. Carlos group [9].
The lattices simulated using the SU(3) gauge group and the number of configurations for

β = 5.7 are

L 8 10 14 18 26 36 44 64∗ 72∗ 80∗ 88∗ 96∗

L(fm) 1.5 1.8 2.6 3.3 4.8 6.6 8.1 11.8 13.2 14.7 16.2 17.6
# Confs 56 149 149 149 132 100 29 14 20 25 68 67

where∗ stands for simulations carried out by the Berlin-Moscow-Adelaide group [8]. Note that we
took the lattice spacing from the string tension [7] and not from r0 as the Berlin-Moscow-Adelaide
group did in [8]. We have rescaled their data according to ourdefinitions. We would like to call the
reader’s attention that different volumes have different statistics. The lattice gluon propagator for
β = 5.7 can be seen in figure 1.
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Figure 1: Bare gluon propagator fromβ = 5.7 simulations. The data for the largest volumes atL ≥ 64 is
the Berlin-Moscow-Adelaide data [8] rescaled to our definition of the lattice spacing.
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Figure 2: Bare gluon propagator fromβ = 6.0 simulations.

The simulations forβ = 6.0, where the lattice spacing isa = 0.1016(25) fm, were carried for
the following lattices

and the propagators are plotted in figure 2.

As seen in figures 1 and 2, no supression of the gluon propagator is observed. Therefore, as a
first and naive conclusion one could claim that, modulo finitevolume effects, the zero momentum
gluon propagator is finite and non-zero.
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L 16 20 24 28 32 48 64 80
L(fm) 1.6 2.0 2.4 2.8 3.2 4.9 6.5 8.1

# Confs 52 72 60 56 126 104 120 18

3. Modelling The Gluon Propagator

As a first step towards trying to distinguish between a vanishing or nonvanishingD(0), we look
at the compatibility of the lattice data with the functionalforms which have been used to describe
the two Dyson-Schwinger solutions, i.e. the infrared lattice data is fitted to

D(q2) =
Z

q2 +M2 , (3.1)

whereM2 plays the role of a hard mass, and

D(q2) = Z

(

q2
)2κ−1

(q2 + Λ2)2κ . (3.2)

In the fits to (3.2) the pointq = 0 is not included. This is not unwise since finite volume effects are
certainly larger forD(0).

In what concerns the fits to theβ = 5.7 data, we have observed that for the massive like
propagator (3.1), the smaller lattices (L < 6 f m) are not described by the above functional form.
Moreover, for the largest lattices, (3.1) reproduces well the lattice data, i.e. fits haveχ2/d.o. f . <

1.8, for momenta up to 500 MeV with a gluon mass in the range of 719(18) MeV to 2.20(63) GeV.
M depends on the fitting range and on the lattice volume. It was observed thatM (andZ) tend to
increase with the lattice volume. For the fits to (3.2), the results are similar. Indeed, the lattice
data is well described by (3.2) to momenta up to 500 MeV, withΛ decreasing from∼ 900 MeV
to ∼ 420 MeV as the lattice volume increases. Theκ is, within one standard deviation, above 0.5
suggesting thatD(0) = 0. Typical fits can be seen in figures 3 and 4.

We repeated the procedure using the SU(2) gluon propagator of [9] and found a similar be-
haviour. The main difference being that the SU(2) mass scales are typically larger than the corre-
sponding SU(3) mass scales. ForM we get numbers around 1 GeV, whileΛ stays between 700
MeV to 800 MeV andκ touch values slightly below the "magics" 0.5.

The results of fitting theβ = 6.0 lattice gluon data give similar results. For completenesswe
resume the results as follows:

1. "Decoupling" Fit:

484 (L=4.9 fm),q up to 508 MeV;M goes from 600(20) MeV down to 578(12) MeV as the
fitting range is increased;

644 (L=6.5 fm), q up to 503 MeV;M goes from 753(57) MeV down to 655.8(9.3) MeV as
the fitting range is increased;

804 (L=8.1 fm),q up to 664 MeV;M goes from 588(129) MeV down to 576.4(6.6) MeV as
the fitting range is increased;
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Figure 3: IR bare gluon propagator forβ = 5.7 and fits to (2.1).
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Figure 4: IR bare gluon propagator forβ = 5.7 and fits to (2.2). The MeV scales in the graph show the
maximum fitting range compatible, i.e. with aχ2/d.o. f . < 1.8, with (2.2). Note that for the largest volume
theq = 0 GeV point is missing.

2. "Scaling" Fit:

484 (L=4.9 fm), q up to 671 MeV;Λ goes from 460(61) MeV down to 432(27) MeV andκ
goes from 0.579(56) to 0.606(34) as the fitting range is increased;

644 (L=6.5 fm), q up to 503 MeV;Λ goes from 609(111) MeV up to 614(43) MeV andκ
goes from 0.510(31) to 0.513(16) as the fitting range is increased;

804 (L=8.1 fm), q up to 645 MeV;Λ goes from 1.1(1.8) GeV down to 582(54) MeV andκ
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Figure 5: Exponentκ as measured from fitting (2.2) (black points). The plot also showsκ measured using
β = 6.0 asymmetric lattice data to fit (2.2) (blue line) and ratios of propagators (green line) using the same
asymmetric lattice set. The red line isκ = 0.5 and a value ofκ above 0.5 impliesD(0) = 0, aκ < 0.5 means
D(0) = ∞ andκ = 0.5 implies a decoupling type solution.

goes from 0.453(61) to 0.556(17) as the fitting range is increased1.

From the previous analysis, the conclusion is that althougha "decoupling" like gluon propaga-
tor seems to be favoured by the raw lattice data, a "scaling" like propagator is not excluded yet. The
fits just described show that both type of solutions are in good agreement with the lattice data and
that if a "scaling" like propagator is the solution,D(q2) starts to be supressed only for rather low
momenta. Believing on the results of figure 4,D(q2) is supressed only for momenta well below
100 MeV.

4. Cucchieri-Mendes Bounds

In [10], the authors derived inequalities betweenD(0)/V and what they called an average
absolute value of the components of the colour magnetization M(0),

〈M(0)〉2 ≤
D(0)

V
≤ d

(

N2
c −1

)

〈M(0)2〉 , (4.1)

whered is the number of space-time dimensions andNc the number of colours. For the definition
of M(0) see the cited work. In the above expression,〈· · ·〉 means Monte Carlo average and (4.1)
follows directly from using a Monte Carlo approach.

In [10] the different terms in (4.1) were computed for SU(2) simulations and, after performing
a scaling analysis, the authors conclude in favour of a finiteand nonvanishingD(0). Indeed, they

1The reader should be aware that the presented results for the804 lattice have a quite small statistics. So far, the
total number of gauge configurations is 18, which could explain the relative large errors inΛ and the rather low value
for κ obtained with the smallest fitting range.
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Figure 6: Cucchieri-Mendes bounds, the lattice data and corresponding fits toA/Vα . Note that in all fits
the 264 data were excluded in order to have aχ2/d.o. f . < 1.8. Furthermore, forD(0)/V the plot includes
the fits to the smaller set of lattices, i.e. 84−444 and to all data available, i.e. to the lattices 84−884. The
agreement between the two sets of data is perfect.

claimedD(0) ≥ 2.2(3) GeV−2. A similar analysis was performed for SU(3) in [11] and the con-
clusions favour aD(0) = 0, although a finite nonvanishingD(0) was not completely excluded. The
simulations use the Wilson action and different lattice spacings and volumes. For the SU(2) simu-
lations the authors useda∼ 0.22 fm and volumes up to (27 fm)4, whereas the SU(3) simulations
were performed witha∼ 0.10 fm and volumes up to (6.5 fm)4.

Using the lattice data described before forβ = 5.7, we are now in position of review the scaling
analysis for theSU(3) gauge theory — see also [12]. Note that for the largest volumes 644 - 964,
which are data from the Berlin-Moscow-Adelaide group, we only have access toD(0).

Anyway, following [10, 11], we assume that in (4.1) the different functions depend on the
lattice volume asA/Vα . Then, it follows that anα > 1 meansD(0) = 0 in the infinite volume. The
fits of the lattice data to the small set of volumes (L ≤ 8.1 fm) give

〈M(0)〉2 D(0)/V 〈M(0)2〉

α 1.0537(50) 1.0504(45) 1.0530(50)

and confirm the conclusions presented in [11], as we foundα > 1. If one wants to use the full set
of β = 5.7 lattices, we can only investigate the scaling behaviour ofD(0)/V . In this case, the fit
givesα = 1.0538(28) with a χ2/d.o. f . = 0.87, which is in excelent agreement with the estimation
using the smaller set of lattices, and again it suggests aD(0) = 0 in the infinite volume. The
β = 5.7 lattice data and the corresponding fits toA/Vα can be seen in figure 6. Again, as in [11],
if one assumes that the dependence with the volume of the different members of (4.1) are given
by C/V +D/Vα , then the data is well described by this functional form; in this sense, a finite and
non-vanishing value forD(0) in the infinite volume is not excluded.
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5. Power-law Behaviours From Ratios Of Propagators

In [13] a method was proposed which tests the compatibility of the lattice data with a power
law behaviour and, simultaneously, suppresses the finite volume effects. Since the method is not
wellknown, for completeness, we will review it. The infrared propagator can be investigated using
on-axis momenta which are defined as

q[n] =
2
a

sin
(πn

L

)

, n = 0,1, . . . ,
L
2

(5.1)

for a symmetryL4 lattice. If the gluon propagator is described by a pure powerlaw, i.e.

D(q2) = Z
(

q2)2κ−1
, (5.2)

one can define the following ratio

R[n] = ln

[

q2[n+1]D(q2[n+1])

q2[n]D(q2[n])

]

(5.3)

= 2κ Rq[n] = 2κ ln

[

q2[n+1]

q2[n]

]

. (5.4)

The compatibility of the lattice data with a power law can be tested fitting the lattice data to

R[n] = 2κ Rq[n] + C, (5.5)
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Figure 7: Ratios of gluon and ghost propagators for large asymmetric lattices [13]. Note that, while the
gluon data seems to be compatible with a power law behaviour,the ghost propagator does not seem to
follow a power law.
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Figure 8: Ratios of propagators forβ = 5.7 lattices.

whereC is a constant which resumes both the deviations from a power law behaviour and the finite
volume effects which are not eliminated by taking the ratio of propagators inR[n]. In [13], the
authors analyzed such type of fits to the lattice data for large asymmetric 83 − 183× 256 lattices
— see figure 7. For the gluon propagator the fits give, within one standard deviation,κ > 0.5 with
κ ∼ 0.53 and a constantC which seems to approach zero as we go from 83×256 to 183×256. The
first result suggests aD(0) = 0, while the second result suggests thatC mainly resumes the finite
volume effects. In what concerns the ghost propagator, figure 7 shows that either the data is still far
from the linear behaviour or the ghost propagator does not follow a pure power law in the infrared
region.

The ratios for theβ = 5.7 propagators can be seen in figure 8. We have tried to fit the data
coming from the largest lattice volumes to (5.5) but it turnsout that theχ2/d.o. f . were always
too large, i.e. well above 2. This is probably due to rotational invariance violations as the infrared
Berlin-Moscow-Adelaide data mixes different types of momenta which have different types of cor-
rections due to the lack of rotational invariance. Indeed a similar effect is seen in results obtained
from other lattices when one mixes on-axis with off-axis momenta. Given that we cannot distin-
guish between the two types of points in the Berlin-Moscow-Adelaide data, we show in figure 9 the
ratios for some asymmetric lattices and the large volume SU(2) propagators. The figure includes
the κ measured from fitting the lattice data to (5.5). The 1284 results for the SU(2) gauge group
is the only data which gives aκ < 0.5, within one standard deviation. However, the infrared 1284

propagator, see figure 10, shows larger fluctuations than anyother calculation. Furthermore, it is
one of the very few simulations where one sees an enhancing ofthe propagator in infrared region.
Certainly, this is due to the small statistics.

9



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
3
3

Lattice Infrared Landau Gauge Gluon Propagator O. Oliveira

0.4 0.6 0.8 1 1.2 1.4
R

q

0

0.5

1

1.5

R
Z

16
3
 x 256

18
3
 x 256

80
4
 [SU(2) β = 2.2]

128
4
 [SU(2)]

0.533(19)
0.524(13)

0.539(18)

0.495(13)

κ

Figure 9: Ratios of propagators for SU(3) asymmetric lattices atβ = 6.0 and SU(2) simulations.

6. How Different are the SU(2) and SU(3) Infrared Gluon Propagators?

As a final topic, we would like to discuss how different are theSU(2) and SU(3) propagators.
The discussion of section 3 suggests that there should be a difference in the infrared. Indeed, the
mass scales for SU(2) and SU(3) don’t seem to be equal withMSU(2) > MSU(3). Moreover, the
scaling analysis of the Cucchieri-Mendes bounds seems to give different conclusions when we use
different gauge groups — see section 4 and [10, 11]. However,in [14, 15] it was shown that the
two propagators are similar for momenta larger than∼ 800 MeV. For smaller momenta, one can
see some differences whose origin was not clear. If one uses now the SU(2) data from the S. Carlos
group and the SU(3) Berlin-Moscow-Adelaide data one can compare results for volumes up to
(17 fm)4. In order to compare the SU(2) and SU(3) propagators, they were renormalized by the
condition

D(q2)
∣

∣

q2=µ2 =
1

µ2 (6.1)

choosingµ = 3 GeV. The renormalization constants were computed after fitting D(q2) to the 1-
loop perturbative result forq > 2.5 GeV. In these fits for SU(3) we used the conic cut data, while
for the SU(2) we used only the diagonal momenta. The renormalization constants were computed
from the condition (6.1) using the results of the fits. The statistical error in the renormalization
constants being around 10%.

The renormalized propagators, which can be seen in figure 10,show clear differences in the
infrared region. This result is not in contradiction with [14], which had a limited access to the low
momenta region. Furthermore, readingD(0) from figure 10 it follows that

D(0)SU(2)

D(0)SU(3)
∼

5
7.5

=
2
3

, (6.2)
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Figure 10: Comparing SU(2) and SU(3) gluon propagators.

suggesting aD(0)SU(Nc) ∼ Nc. This result is not necessarily in conflict with the largeNc expansion
because the gluon propagator is not a gauge invariant object.

We would like to call the reader’s attention that, although the propagators are different, the
infrared exponents computed by the ratio method discussed in the previous section seem to be
similar.

7. Conclusions

The results discussed in this article show that results obtained from lattice simulations for the
gluon propagator in Landau gauge can be made compatible withboth types of Schwinger-Dyson
solutions, i.e. it can be seen either as a scaling like solution, whereD(0) = 0, or as a decoupling
solution, whereD(0) is finite and non-vanishing. The raw lattice data shows a plateau at small
momenta and, in this sense, it does look more like as a decoupling type of propagator.

The analysis of the bounds derived in [10] are not conclusivewhen applied to the SU(3) sim-
ulations [11, 12]. According to the analysis shown here for the β = 5.7, the leading behaviour is
already captured when one includes volumes as "small" as∼ (8 fm)4. Moreover, the performed
scaling analysis is in good agreement with the ratios analysis, favouring aD(0) = 0. This does not
necessarily mean that the lattice simulations point towards a scaling like solution. Remember that
the ratio method applied to the asymmetric lattice data shows that the ghost propagator does not
follow a power law. In what concerns the gluon and ghost propagators, it looks like that before
having a clear understanding of the finite lattice volume/spacing effects, it will be quite difficult to
give a definitive answer on the nature of the propagators in the deep infrared region.

Finally, the Landau gauge gluon SU(2) and SU(3) propagatorsare compared for momenta
below 800 MeV. It turns out that there are clear differences and a scaling lawD(0)SU(Nc) ∼ Nc

seems to hold.
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