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The study of dynamical gluon mass generation at the level of Schwinger-Dyson equation involves

a delicate interplay between various field-theoretic mechanisms The underlying local gauge in-

variance remains intact by resorting to the well-known Schwinger mechanism, which is assumed

to be realized by longitudinally coupled bound state poles,produced by the non-perturbative dy-

namics of the theory. These poles are subsequently includedinto the Schwinger-Dyson equation

of the gluon propagator through the three-gluon vertex, generating a non-vanishing gluon mass,

which, however, is expressed in terms of divergent seagull integrals. In this talk we explain how

such divergences can be eliminated completely by virtue of acharacteristic identity, valid in di-

mensional regularization. The ability to trigger this identity depends, in turn, on the details of the

three-gluon vertex employed, and in particular, on the exact way the bound state poles are incor-

porated. A concrete example of a vertex that triggers the aforementioned identity is constructed,

the ensuing cancellation of all seagull divergences is explicitly demonstrated, and a finite gluon

mass is obtained. Due to the multitude of conditions that must be simultaneously satisfied, this

construction appears to be exclusively realized within thePT-BFM framework. The resulting

system of integral equations gives rise to a gluon mass that displays power-law running and an

effective charge which, due to the presence of the gluon mass, freezes in the infrared at a finite

(non-vanishing) value.
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1. Introduction

The gluon is massless at the level of the fundamental QCD Lagrangian, and remains massless
to all order in perturbation theory. However, as Cornwall argued in the early eighties [1], the
non-perturbative QCD dynamics generate an effective, momentum-dependent mass for the gluons,
without affecting the localSU(3)c invariance, which remains intact.

Given that the gluon mass generation is a purely non-perturbative effect, the natural framework
to study it, in the continuum, are the Schwinger-Dyson equations (SDEs) of the theory. At the level
of the SDEs the generation of such a mass is associated with the existence of infrared finite solutions
for the gluon propagator [1, 2, 3]. In covariant gauges, the gluon propagator,∆µν(q), has the form

∆µν(q) = −i

[
Pµν(q)∆(q2)+ ξ

qµqν

q4

]
, (1.1)

whereξ denotes the gauge-fixing parameter, and Pµν(q) = gµν −qµqν/q2. The scalar factor∆(q2)

is given by∆−1(q2) = q2 + iΠ(q2), whereΠµν(q) = Pµν(q)Π(q2) is the gluon self-energy; the
dimensionless vacuum polarization,ΠΠΠ(q2), is defined asΠ(q2) = q2ΠΠΠ(q2). So, in general, one
looks for solutions with∆−1(0) > 0. Such solutions may be fitted by “massive” propagators of the
form ∆−1(q2) = q2 + m2(q2); m2(q2) is not “hard”, but depends non-trivially on the momentum
transferq2.

The pinch technique (PT) propagator, usually denoted by∆̂(q2) in the literature [1, 4], is the
ideal quantity to study in this context, because it is independent of the gauge-fixing parameter (ξ ).
Therefore, any statement about its infrared behavior, and in particular the generation of a gluon
mass, is bound to be free of gauge artefacts. In recent studies, however, the tendency has been to
focus on the gluon propagator in a fixed gauge, such as the conventional Landau gauge (ξ = 0),
instead of the privileged Feynman gauge (ξQ = 1) of the background field method (BFM) [5],
which, quite remarkably, reproduces automatically the PT results (third item in [4]). The main
reason for this less optimal choice is the need to compare meaningfully the SDE results with those
obtained from lattice studies, which, almost exclusively,are carried out in the Landau gauge.

What the latest large-volume lattice studies reveal is crystal clear: The gluon propagator of
pure Yang-Mills is infrared finite, both inSU(2) [6] and SU(3) [7]. Interestingly enough, these
recent lattice findings, striking as they may be, do not constitute the first indication of this very
characteristic behavior; several earlier simulations hadfound qualitatively similar results, even in
gauges other than the Landau ( see, e.g., [8]).

The aforementioned lattice results, in addition to whatever modifications they may induce to
other formalisms aspiring to describe the infrared sector of QCD, they present a serious challenge
even to the practitioners of the gluon mass generation (albeit, a pleasant one). Indeed, the SDE
analysis must be further refined, and freed of whatever majoror minor theoretical shortcomings
one has been accustomed to live with in the past. The purpose of this talk is to report recent
progress in this direction, and in particular on the solution of the annoying problem of seagull
divergences [9], which has afflicted this approach from the first day of its invention [1]. Turns out
that the elimination of the seagull divergences brings about an additional advantage, namely the
separation of the SDE into two coupled equations, furnishing uniquely the running of the effective
charge and the gluon mass in the entire range of Euclidean momenta.
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2. Seagull divergences: a perennial nuisance to gluon mass generation

In order to obtain massive solutionsgauge-invariantly, it is necessary to invoke the well-known
Schwinger mechanism [10]. The basic observation is that if,for some reason,ΠΠΠ(q2) acquires a pole
at zero momentum transfer, then the vector meson becomes massive, even if the gauge symmetry
forbids a mass at the level of the fundamental Lagrangian. Indeed, it is clear that if the vacuum
polarizationΠΠΠ(q2) has a pole atq2 = 0 with positive residueµ2, i.e. ΠΠΠ(q2) = µ2/q2, then (in
Euclidean space)∆−1(q2) = q2+µ2. Thus, the vector meson becomes massive,∆−1(0) = µ2, even
though it is massless in the absence of interactions (g = 0). There isno physical principle which
would precludeΠΠΠ(q2) from acquiring such a pole. In astrongly-coupledtheory like QCD this may
happen for purely dynamical reasons, since strong binding may generate zero-mass bound-state
excitations [11]. The latter actlike dynamical Nambu-Goldstone bosons, in the sense that they are
massless, composite, andlongitudinally coupled; but, at the same time, they differ from Nambu-
Goldstone bosons as far as their origin is concerned: they donot originate from the spontaneous
breaking of any global symmetry [1].

Of course, in order to obtain the full dynamics, such as, for example, the momentum-dependence
of the dynamical mass, one must turn eventually to the SDE that governs the corresponding gauge-
boson self-energy. The way the Schwinger mechanism is integrated into the SDE is through the
form of the three-gluon vertex. The latter, even in the absence of mass generation, constitutes a
central ingredient of the SDE, and plays a crucial role in enforcing the transversality of the gluon
self-energy. Therefore, an important requirement for any self-consistent Ansatz used for that vertex
is that it should satisfy the correct Ward identity (WI) of the PT-BFM formulation, namely

qµ Γ̃µαβ = ∆−1
αβ (k+q)−∆−1

αβ(k) . (2.1)

In addition, in order to generate a dynamical mass one must assume that the vertex containsdy-
namical poles, which will trigger the Schwinger mechanism when inserted into the SDE for the
gluon self-energy.

The point is that the full realization of the procedure outlined above is very subtle. In particular,
even though the use of a three-gluon vertex containing massless poles and satisfying the correct WI
leads indeed to a transverse and infrared finite self-energy(i.e. ∆−1(0) 6= 0), as expected, the
actual value of∆−1(0) has always been expressed in terms of divergent integrals, of the form (see,
e.g.,[1, 2, 3])

∆−1(0) = c1

∫

k
∆(k)+c2

∫

k
k2∆2(k) , (2.2)

where, in dimensional regularization (DR),
∫

k ≡ µ2ε (2π)−d ∫
ddk, with d = 4− ε the dimension

of space-time. This is not a problem, in principle, providedthat the divergent integrals appearing
on the rhs of (2.2) can be properly regulated and made finite,without introducing counterterms
of the form m2

0(Λ2
UV)A

2
µ , which are forbidden by the local gauge invariance of the fundamental

QCD Lagrangian. Various regularization procedures of increasing sophistication have been tried
out over the years, but the resulting (regularized)∆−1(0) remained theoretically ambiguous. Given
how nicely all other pieces of the puzzle fit together, the underlying impression has always been
that the “seagull problem” had to do with some (not fully understood) subtlety rather than some
intrinsic “need” of the theory to produce quadratic divergences.
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Figure 1: The “one-loop dressed” SDE for the photon self-energy.

3. The “seagull identity”: how to keep the photon massless (if you must)

It is most instructive to understand what happens in a theorywhere the seagull terms do not ap-
pear due to the self-interactions of a gauge boson that has acquired a mass dynamically, but rather
because the theory has scalar particles that are massive at tree-level. These scalars interact with
the gauge boson, and contribute seagull terms to its vacuum polarization. The question is: if the
gauge boson must remain massless, how do the seagull contributions disappear from that vacuum
polarization? To see how this happens, let us turn to scalar QED, where the aforementioned cir-
cumstances (massive scalars, must-be massless photon) arerealized, and study the SDE governing
the photon self-energy.

At the “one-loop dressed” level the SDE for the photon self-energy reads (Fig. 1)

Πµν(q) = e2
∫

k
Γ(0)

µ D(k)D(k+q)Γν +e2
∫

k
Γ(0)

µνD(k) , (3.1)

whereD(k) is the fully-dressed propagator of the scalar field.Γν is the fully dressed photon-
scalar vertex, whose tree-level expression is given byΓ(0)

µ = −i(2k + q)µ . Moreover, the bare

quatrilinear photon-scalar vertex is given byΓ(0)
µν = 2igµν . The photon-scalar vertexΓµ and the

scalar propagatorD are related by the Abelian all-order WI

qν Γν = D
−1(k+q)−D

−1(k) , (3.2)

It is fairly easy to demonstrate that, by virtue of (3.2),qν Πµν(q) = 0, and thatΠ(q2) reads

Π(q2) =
−2ie2

d−1

[∫

k
D(k)D(k+q)kµ Γµ −d

∫

k
D(k)

]
, (3.3)

Let us compute from (3.3) the one-loop expression forΠ(q2), to be denoted byΠ(1)(q2).

Π(1)(q2) =
−ie2

d−1

[∫

k
(4k2−q2)D0(k)D0(k+q)−2d

∫

k
D0(k)

]
, (3.4)

whereD0(k) = (k2−m2)−1. Taking the limitq→ 0, we find

Π(1)(0) =
−4ie2

d−1

[∫

k
k2

D
2
0(k)−

d
2

∫

k
D0(k)

]
. (3.5)

Of course, there is no doubt that the photon remains masslessperturbatively, i.e. we must have
that Π(1)(0) = 0. However, the way this requirement is realized is rather subtle: the rhs of (3.5)
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vanishes indeed, by virtue of an identity that is exact in DR,namely

∫

k

k2

(k2−m2)2 =
d
2

∫

k

1
k2−m2 , (3.6)

Thus, the perturbative masslessness of the photon is explicitly realized and self-consistently en-
forced within the DR. Eq.(3.6) may be cast in a form that is particularly suggestive for the analysis
that follows, namely ∫

k
k2∂D0(k)

∂k2 = −
d
2

∫

k
D0(k) . (3.7)

We now return to the general Eq.(3.3). In order to analyze it further we must furnish some
information about the form ofΓµ . Of course, any meaningful Ansatz forΓµ must satisfy the WI of
(3.2), or else the transversality ofΠµν(q) will be compromised from the outset. The form obtained
by Ball and Chiu [12], after “solving” the WI, under the additional requirement of not introducing
kinematic singularities, is (we omit the identically conserved part of the vertex)

Γµ =
(2k+q)µ

(k+q)2−k2

[
D

−1(k+q)−D
−1(k)

]
. (3.8)

This vertex, when substituted into (3.3), yields

Π(q2) =
ie2

d−1

[∫

k
(4k2−q2)

D(k+q)−D(k)
(k+q)2−k2 +2d

∫

k
D(k)

]
. (3.9)

Taking the limit of Eq.(3.9) asq→ 0, using that

D(k+q)−D(k)
(k+q)2−k2 →

∂D(k)
∂k2 +O(q2) , (3.10)

we have that

Π(0) =
4ie2

d−1

[∫

k
k2∂D(k)

∂k2 +
d
2

∫

k
D(k)

]
, (3.11)

Of course, we must have thatΠ(0) = 0, given that there is nothing in the dynamics that could
possibly endow the photon with a mass; in particular, the Schwinger’s mechanism is “switched
off”, i.e. we have not introduced dynamical poles, and, given the form of (3.8), neither kinematic
ones, which might simulate the dynamical ones at the level ofthe SDE. Thus, the rhs of (3.11)must
vanish, and therefore, we must have that

∫

k
k2∂D(k)

∂k2 = −
d
2

∫

k
D(k) , (3.12)

which is the non-perturbative generalization of (3.7).

Note a crucial point: the seagull terms appearing in (3.7)cannotbe set to zero individually,
because the scalar propagator inside them is massive (already at tree-level): the only way to keep
the photon massless, is to employ (3.7), which cancels them against each other. For example, if the
term

∫
kD(k) on the rhs were multiplied by any factor other than(d/2) one would be stuck with

seagull divergences.
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Figure 2: “One-loop dressed” gluonic graphs of the SDE for the PT-BFM gluon self-energy.

4. Massive gluons: Schwinger mechanism and seagull identity in a delicate balance

Turns out that the construction presented in the previous section generalizes in the context of
pure Yang-Mills theory, such as quarkless QCD, butonly within the PT-BFM formalism! As has
been explained in detail in the recent literature [2, 13], this latter formalism allows for a gauge-
invariant truncation of the SD series, in the sense that it preserves manifestly and at every step
the transversality of the gluon self-energy. Specifically,for the case at hand, we will consider
only the “one-loop dressed” part of the gluon SDE that contains gluons, shown in Fig. 2, leaving
out (gauge-invariantly!) the “one-loop dressed” ghost contributions and all “two-loop dressed”
diagrams. Note that the Feynman rules used to build this SD series are those of the BFM [5]; in
particular, the external gluons (distinguished by the greycircles attached to them) are treated as if
they were background gluons. As we will see in a moment, the form of these vertices is crucial
for obtaining from the SDE precisely the right combination of terms (and with the correct relative
weights) that appears in (3.12).

In order to reduce the algebraic complexity of the problem, we drop the longitudinal terms
from the gluon propagators inside the integrals, i.e. we set∆αβ →−igαβ ∆. This does not compro-
mise the transversality of̂Πµν(q) provided that we do the same on the rhs of the WI satisfied by
Γ̃ναβ , namely we have simply

qν Γ̃ναβ = [∆−1(k+q)−∆−1(k)]gαβ , (4.1)

instead of the full WI given in (2.1). Then, the SDE corresponding to Fig. 2 reduces to

∆̂−1(q) = q2 +
ig2CA

2(d−1)

[∫

k
Γ̃(0)

µαβ ∆(k)∆(k+q)Γ̃µαβ +2d2
∫

k
∆(k)

]
, (4.2)

whereCA the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)]. The vertex
Γ̃(0)

µαβ (q,k,−k−q) is the bare three-gluon vertex in the Feynman gauge of the BFM, and Γ̃µαβ
denotes its fully-dressed version.

The function∆̂(q) appearing on the lhs of (4.2) is the scalar part of the gluon propagator in the
BFM, i.e. two background gluons entering.∆̂(q) is related to the standard∆(q), defined in theRξ
gauges, by means of the powerful identity∆̂(q)[1+ G(q2)]2 = ∆(q), whereG(q2) is an auxiliary
two-point function [14], which, quite remarkably, coincides in the Landau gauge with the well-
known Kugo-Ojima function (see, e.g. talk of Daniele Binosiin these proceedings [16]). We will
next setG(q2) = 0, i.e. we effectively assume that, inside the quantum loops, ∆(q) = ∆̂(q).

6
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Figure 3: The SDE for the three-gluon vertex. All kernels are one-particle irreducible, and the 1/q2 pole is
not kinematic but dynamical (purely non-perturbative); physically it corresponds to a (composite) Goldstone
mode, necessary for maintaining the local gauge invariance.

At this point enters the new ingredient: a judicious Ansatz for the three-gluon vertex which, in
addition to satisfying (4.1) will allow us to use the seagullidentity (3.12) and get a non-vanishing
and finite∆−1(0).

To begin with, let us first write∆−1(q) in the alternative form (in Minkowski space)

∆−1(q) = q2H−1(q)− m̃2(q) . (4.3)

The tree-level result for∆−1(q) is recovered by settingH−1(q) = 1 andm̃2 = 0. Then, an appro-
priate Ansatz for̃Γναβ is given by [9]

iΓ̃µαβ =

[
(k+q)2H−1(k+q)−k2H−1(k)

(k+q)2−k2

]
Γ̃(0)

µαβ + Vµαβ , (4.4)

where the termVµαβ contains the non-perturbative contributions due to bound-state poles associ-
ated with the Schwinger mechanism. Note that we must have

qµVµαβ = [m̃2(k)− m̃2(k+q)]gαβ , (4.5)

in order for theΓ̃µαβ of Eq. (4.4) to satisfy (by construction) the correct WI of (4.1).
The Ansatz of (4.4) mimics that of Eq. (3.8) to the extent thatthe first term contains the

right structure to produce, when inserted into the first termon the rhs of (4.2), the derivative term
appearing on the lhs of (3.12). The rhs of (3.12) is already there: it is the second term on the rhs of
(4.2), originating directly from the seagull diagram (a2).

Similarly, a simple Ansatz forVµαβ that captures the two essential characteristics of having a
(composite), longitudinally coupled poles, and satisfying the WI of (4.5) is

Vµαβ = Vℓ
µαβ +V t

µαβ , (4.6)

where

Vℓ
µαβ =

qµ

q2

[
m̃2(k)− m̃2(k+q)

]
gαβ , (4.7)

and with the transverse partV t
µαβ satisfyingqµV t

µαβ = 0. We can write the vertex of (4.4) equiva-
lently as

iΓ̃µαβ =

[
∆−1(k+q)−∆−1(k)

(k+q)2−k2

]
Γ̃(0)

ναβ + Vµαβ , (4.8)

7
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with

Vµαβ = Vµαβ +Vr
µαβ , (4.9)

where

Vr
µαβ = (2k+q)µ

[
m̃2(k+q)− m̃2(k)

(k+q)2−k2

]
gαβ . (4.10)

The termVr
µαβ is a residual piece, acting as an additional (non-perturbative) vertex term, originating

from forcing the vertex to assume the form of (4.8). This lastway of writing Γ̃ναβ makes the use of
the basic identity of Eq.(3.12) immediate. Thus, after these rearrangements, we have that the final
non-perturbative effective vertexVµαβ must be transverse,qµVµαβ = 0.

Substituting for thẽΓµαβ on the rhs the expression given in (4.8) we obtain after simple algebra

∆−1(q2) = q2−
ig2CA

2(d−1)

[
Π(q)+ Πm̃(q)

]
, (4.11)

with

Π(q) = (7d−8)q2
∫

k

∆(k+q)−∆(k)
(k+q)2−k2 +4d

[∫

k
k2 ∆(k+q)−∆(k)

(k+q)2−k2 +
d
2

∫

k
∆(k)

]
, (4.12)

and

Πm̃(q) =
∫

k
Γ̃(0)

µαβ ∆(k)∆(k+q)[Vℓ +{V t +Vr}]µαβ . (4.13)

The term in square brackets on the rhs of (4.12) has exactly the structure needed for employing
(3.12). Note the perfect balance of relative coefficients required for this to happen! This becomes
possible within the PT-BFM framework thanks to the special vertices appearing in the SDE; instead,
in the conventional SD formulation (e.g., in theRξ gauges) it would be very difficult to obtain the
precise combination of terms needed for implementing (3.12). Evidently, by virtue of (3.12) it is
clear thatΠ(0) = 0. Thus, the part of the calculation determiningΠ(q) is very similar to that of
scalar QED, in the sense that it leads tototal seagull annihilation, keeping the gluon massless.

On the other hand, the termΠm̃(q), not present in the scalar QED study, makes it possible to
have∆−1(0) 6= 0 for the gluons. Assuming, for simplicity, that the dominant contribution in (4.13)
comes fromVℓ, we obtain

Πm̃(q) = −
2d
q2

∫

k
m̃2(k)∆(k)∆(k+q)[(k+q)2−k2] . (4.14)

Now, in the limitq2 → 0 (in Euclidean space) we have that

lim
q2→0

{
1
q2

∫

kE

m̃2(k)∆(k)∆(k+q)[(k+q)2−k2]

}
= −

1
2

∫

kE

k2∆2(k2)[m̃2(k2)]′ . (4.15)

where the “prime” denotes differentiation with respect tok2. Note that a monotonically decreasing
mass,[m̃2(k2)]′ < 0, guarantees the positivity of̃m2(0) (in Euclidean space)

An important consequence of this analysis is that Eq. (4.11)can be split unambiguously into
two parts, one that vanishes asq2 → 0 and one that does not. In fact, using (4.3) on the lhs of

8
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(4.11), we can assign the two types of contributions into twoseparate (but coupled) equations,
namely (Minkowski space)

q2H−1(q) = q2−
ig2CA

2(d−1)
Π(q) , (4.16)

m̃2(q) =
ig2CA

2(d−1)
Πm̃(q) . (4.17)

As we will see shortly, the first equation will determine the momentum dependence of the effective
charge, and the second the running of the gluon mass.

5. Effective charge and gluon mass: coupled but unique

It is well-known that, due to the Abelian WIs of the PT-BFM Green’s functions, the product

d̂0(q
2) = g2

0∆̂0(q
2) = g2∆̂(q2) = d̂(q2), (5.1)

forms a renormalization-group (RG)-invariant (µ-independent) quantity [1]. In order to realize
Eq.(5.1) non-perturbatively, first set

m̃2(q2) = m2(q2)H−1(q2) , (5.2)

wherem2(q2) is assumed to be the RG-invariant dynamical gluon mass. Then

∆̂(q2) =
H(q2)

q2 +m2(q2)
, (5.3)

and from the requirement thatg2∆̂(q) must be RG-invariant we have that

g2H(q2) = g2(q2) . (5.4)

Therefore, we finally arrive at the RG-invariant combination

d̂(q2) ≡ g2∆̂(q2) = g2(q2)∆̄(q2) , (5.5)

with

∆̄(q2) =
1

q2 +m2(q2)
. (5.6)

So, d̂(q2) is written as the product of two RG-invariant quantities: the dimensionless running
couplingg2(q2) and the dimensionful “massive” gluon propagator∆̄(q2).

We next cast our analysis in terms of the RG-invariant quantities defined above. The use of
the spectral representation [1, 17] for∆(q2), namely

∆(q2) =
∫

dλ 2 ρ (λ 2)

q2−λ 2 + iε
, (5.7)

9
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Figure 4: Numerical solutions displaying the momentum-dependence of the effective charge and the gluon
mass, for three different values of the renormalization point µ .

results in a spectacular simplification, because it “solves” the combination{∆(k+q)−∆(k)
(k+q)2−k2 } appearing

in (4.12). After a series of standard assumptions one finallyobtains [9]

1

g2(q2)
=

1

g2(µ2)
+ b̃

[∫ q2/4

0
dz

(
1+

4z
5q2

)(
1−

4z
q2

)1/2

∆̄(z)−
∫ µ2/4

0
dz

(
1+

4z
5µ2

)(
1−

4z
µ2

)1/2

∆̄(z)

]
,

(5.8)
and

m2(q2)

g2(q2)
=

2b̃
5

[
∆̄(q2)

∫ q2

0
dyym2(y)∆̄(y) −

1
2

∫ ∞

q2
dyy2∆̄2(y)g2(y)[m2(y)]′

]
, (5.9)

whereb̃= 10CA/48π2; the discrepancy from the factorb= 11CA/48π2, namely the first coefficient
of the QCD one-loopβ -function, is due to the (gauge-invariant!) omission of theghost loops.

To study the behavior of the solutions of (5.9) for asymptotically largeq2, set∆̄(x) → 1/x and
∆̄(y) → 1/y to arrive at

m2(q2) lnq2 =
2
5

[
1
q2

∫ q2

0
dym2(y) −

1
2

∫ ∞

q2
dyg2(y)[m2(y)]′

]
. (5.10)

It is relatively straightforward to establish that the asymptotic solutions of (5.10) display power-law
running. Indeed, substituting on both sides of (5.10) am2(q2) of the form

m2(q2) =
λ 4

0

q2 (lnq2)γ−1 , (5.11)

one recognizes that the second term on the rhs of (5.11) is subleading, and that (5.11) is a solution
of (5.10) provided thatγ = 2

5.
We next solve numerically the two coupled integral equations, renormalizing them at three

different points, namelyµ = {4,10,91}GeV, with α(µ2) = g2(µ)/4π = {0.341,0.229,0.127},
respectively. In Fig. 4, we show the results forα(q2) andm2(q2); for either quantity we see clearly
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Figure 5: The RG-invariant product̂d(q2) obtained by combining the results forα(q2) andm2(q2).

that the three curves merge practically into a single one, thus confirming numerically theirµ-
independence, expected on formal grounds. The solutions for α(q2) may be fitted by the physically
motivated functional form [1], namely

α(q2) =
1

4πb̃ ln[(q2 + tm2
0)/Λ2]

, (5.12)

with t = 3.7 andΛ = 645MeV. The behavior ofm2(q2) in the entire range of momenta can be
accurately described by the following parametrization

m2(q2) =
m4

0

q2 +m2
0

[
ln

(
q2 + f (q2,m2

0)

Λ2

)/
ln

(
f (0,m2

0)

Λ2

)]−3/5

, (5.13)

where f (q2,m2
0) = ρ1m2

0 + ρ2
m4

0
q2+m2

0
, with ρ1 = −1/2, ρ2 = 5/2, andm0 = 612MeV. Finally, with

the help of Eq. (5.5) we can constructd̂(q2) out of the numerical solutions forα(q2) andm2(q2); the
result is shown in Fig. 5. Obviously, sincêd(q2) is built out of two quantities that are individually
independent ofµ , it too turns out to beµ-independent; this property is clearly observed in Fig. 5.

6. Conclusions

The analysis presented here demonstrates that the appearance of seagull divergences in gluon
mass generation is caused by a subtle mismatch between two parallel field theoretic mechanisms.
Specifically, the Schwinger mechanism, which requires the appearance of massless poles in the
three-gluon vertex, distorts the mechanism responsible for the cancellation of the seagull diver-
gences,unlessthe poles enter into the gluon vertex in a very particular way. A concrete example
of a vertex that does not produce any clash between these two mechanism has been given, and
the implications for the resulting SDE have been worked out.The elimination of the seagull di-
vergences allows the resulting SDE equation to be separatedunambiguously into two distinct dy-
namical equations, determining the gluon mass and the QCD effective charge. This, in turn, is
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a significant improvement over the existing approaches, where the infrared behavior of these two
quantities had to be extracted (not without a certain ambiguity) from d̂(q2). It is clear that the
methodology outlined here should be applied to gauges wherethe results can be directly compared
to lattice simulations (such as the Landau gauge). Given that the solutions forα(q2) andm2(q2),
and therefore for̂d(q2) and/or∆(q2), are expected to be unique, one should be able to test if the
freezing value∆(0) obtained within this new SDE treatment coincides with that seen on the lattice.
We hope to report progress in this direction in the near future.
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