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1. Introduction

During the ten years ranging from 1965 to 1974 was invented the standard model of particle
physics. This was a major and often overlooked scientific event. During the early sixties, the four
fundamental interactions where known, but the weak interaction was only described by Fermi’s ef-
fective theory and the strong interaction seemed to be even further away from any sound theoretical
description, precisely because, being strong, it seemed impossible to control by expanding around
a small parameter, as had been the case for quantum electrodynamics.

Then came the miracle. A quantum field theory containing quarks and gauge particles named
gluons was proposed and its major property was isolated: asymptotic freedom. It was a miracle
because its formulation is extremely compact, with onlynf + 1 free parameters1 namingnf the
number of quark flavors, i.e.nf = 6, the beautiful constraints of gauge symmetry, while the field
of its applications is huge. Up to now no strong argument has been presented which could allow to
deny QCD to be the theory of strong interactions. Of course there are drawbacks. The first is that
we are not able to extract very accurate predictions from QCD’s premises.

But the most frustrating unsolved problem is the inexistence of a real proof of the confinement
property, i.e. of the observation that only hadrons are observed in nature and never isolated quarks
or gluons. We are all convinced that confinement is a propertyof QCD. Confinement is an experi-
mental fact. Furthermore lattice-QCD (LQCD) calculations, which are based on QCD’s principles,
provide results in full agreement with confinement. But thisis not a proof.

Confinement is the major issue of this meeting and we all believe that it has to be looked
for in the infrared behaviour of QCD. We will hear in this conference discussions around several
approaches to confinement. Our approach will not be to followor criticise some confinement sce-
narios, but rather to try to provide reliable answers to the question: How do Green functions behave
in the deep infrared. In this talk we will, for the sake of simplicity, restrict ourselves to the quark-
less pure Yang-Mills theory. We assume that the main features of QCD’s infrared properties are
present in Yang-Mills, at odds with Gribov’s hypothesis that the light quark supercritical binding
was the origin of confinement [1].

1.1 Tools to handle the Green functions in the deep infrared

There exist analytical tools which are mainly Ward-Slavnov-Taylor identities (WSTI) and
Dyson-Schwinger equations (DSE). There exists a numericaltool which is LQCD.

WSTI and DSE are exact. They can be derived rigorously from the path integral formulation
of QCD. However, WSTI’s are a necessary a posteriori check but do not constrain so much while
DSE’s are a very large set of coupled non linear integral equations. Trying to solve the latter is a
formidable task and it is not clear how many solutions exist.There can even be an infinity of them.

LQCD is exact, it is really an approximation of QCD, however it is only numerical, leading to
an intrinsic uncertainty, and, as we already mentioned, theaccuracy is poor.

We believe that it is extremely fruitful to combine both the analytical and numerical ap-
proaches. Indeed we will see an example in which LQCD allows to decide between two very
different classes of solutions of DSE’s. And next we will seean example in which analytic meth-

1nf +2 if we count the strong CP term.
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ods provide the functional form of the ghost propagator in the deep infrared, thus allowing to
extrapolate to zero momentum, where no direct LQCD calculation is possible.

1.2 Notations and definitions

In latin languages the translation of “ghost" starts with an“F", while “gluons" starts with a “G"
in all languages we know. Therefore we use the following notations: the bare gluon propagator is
written

Gab
µν(p2,Λ2) ≡

G(p2,Λ2)

p2 δab

[
δµν −

pµ pν

p2

]
(1.1)

whereG(p2,Λ2) is the bare gluon dressing function,Λ is the ultraviolet cut-off, inverse lattice
spacinga−1 in the lattice case. The bare ghost propagator is written

Fab(p2,Λ2) ≡
F(p2,Λ2)

p2 δab (1.2)

whereF(p2,Λ2) is the bare ghost dressing function.
The corresponding renormalized quantities are labelled bytheRsubscript:

GR(p2,µ2) ≡ lim
Λ→∞

Z−1
3 (µ2,Λ) G(p2,Λ2) FR(p2,µ2) ≡ lim

Λ→∞
Z̃−1

3 (µ2,Λ) F(p2,Λ2) (1.3)

whereµ is the renormalisation scale.
An important remark for the following is that [2, 3]

F(0,Λ) = Z̃3(µ2,Λ)

(
FR(0,µ2) + O

(
1

Λ2

))

G(0,Λ) = Z3(µ2,Λ)

(
GR(0,µ2) + O

(
1

Λ2

))

(1.4)

In the MOM renormalisation scheme, the renormalised quantities are set equal to their tree
value when the momentum is equal to the renormalisation scale:

GR(µ2,µ2) = FR(µ2,µ2) ≡ 1 (1.5)

whence, using eq. (1.3)

Z3(µ2,Λ2) = G(µ2,Λ2), Z̃3(µ2,Λ2) = F(µ2,Λ2). (1.6)

The bare ghost-ghost-gluon vertex is parametrised by

Γ̃abc
ν (−q,k;q−k) = ig0 f abc( qνH1(q,k)+ (q−k)νH2(q,k) ) , (1.7)

wherek (q) is the incoming (outgoing) ghost momentum. Taylor’s theorem [4] implies that the
ghost-ghost-gluon vertex becomes trivial when the incoming momentum vanishes

H1(q,0)+H2(q,0) = 1. (1.8)

3
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This implies that if we take this kinematics to renormalise the ghost-ghost-gluon vertex, the vertex
renormalisation constant is̃z1 = 1.

Exploiting this property we can define very simply “Taylor’scoupling constant" by [5]

αT(p2,Λ2) =
g2

0(Λ2)

4π
F2(p2,Λ2)G(p2,Λ2). (1.9)

whereg2
0(Λ2) is the bare coupling constant. Notice that, whileg0,F andG depend logarithmically

on the cut-offΛ, αT only depends on it via inverse powersO(1/Λ2).
Finally we assume, as everybody does, some simple power law in the deep infrared:

G(p2,Λ2) ∝
p2 → 0

(p2)αG F(p2,Λ2) ∝
p2 → 0

(p2)αF ⇒ αT(p2,Λ2) ∝
p2 → 0

(p2)2αF+αG (1.10)

2. Two classes of solutions to the ghost propagator Dyson-Scwinger equation

Let us consider the ghost propagator Dyson-Schwinger equation (GPDSE). It was claimed by
many authors trying to solve the DSE’s that a general conclusion was that 2αF +αG = 0 or, in other
words thatαT(p2) → ct > 0 whenp2 → 0. On the other hand many indications from lattice QCD
show a strong vanishing ofαT(p2), see a recent result at very small momenta in fig. 5 of [6].

Looking into details of the GPDSE we found that there were indeed two classes of solutions [7]

• Solution I: 2αF + αG = 0, αT(p2) →
p2 → 0

ct > 0 andαF < 0, F(p2,Λ2) →
p2 → 0

∞

• Solution II:αF = 0, F(p2,Λ2) →
p2 → 0

ct> 0 and, using the lattice evidence thatαG > 0, 2αF +

αG > 0, αT(p2) → 0

This is valid at fixed cut-offΛ. Similar conclusions hold for the renormalised quantities. Solution
I is often called the “scaling solution" while solution II iscalled for some reason the “decoupling
solution".

2.1 Schematic proof of the existence of the two solutions

The GPDSE writes in our notations as

1
F(k2,Λ)

= 1+g2
0Nc

∫
d4q

(2π)4


F(q2,Λ)G((q−k,Λ)2)

q2(q−k)4

[
(k ·q)2

k2 −q2
]

H1(q,k,Λ)


 , (2.1)

Using Taylor’s theorem eq. (1.8), completed with indications from perturbative QCD, we assume
that in eq. (2.1)H1 is regular: never vanishing nor infinite, and not too far from1. In practice we
will take it as a constant close to 1. This hypothesis is rather usual. The r.h.s of eq. (2.1) is divergent
at fixedΛ since the integrandGF decreases at largeq2 asα35/44 which is not enough to make the
integral convergent. Therefore we prefer to regularize it by using a subtracted GPDSE:

1
F(k2)

−
1

F(k′2)
= 1+g2

0Nc

∫
d4q

(2π)4

(
F(q2)

q2

)(
G((q−k)2)

(q−k)4

[
(k ·q)2

k2 −q2
]

−
G((q−k′)2)

(q−k′)4

[
(k′ ·q)2

k′2
−q2

])
H1 (2.2)

4
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where we have assumedH1 to be a constant and omitted to writeΛ. The r.h.s. now is convergent.
Let us assume that we rescale all momenta by a common factorλ → 0, we count the power be-
haviour of the l.h.s and the r.h.s. From eq. (1.10) the l.h.s behaves like(λ 2)−αF and the r.h.s as
(λ 2)αG+αF . Matching both sides leads to solution I: 2αF + αG = 0. However,there is a loophole
in this argument when1/F(p2) → 1/F(0) > 0, i.e. whenαF = 0 since then the l.h.s. vanishes to
leading order. To get a relation we need to go to the subleading behaviour of 1/F(p2). We are then
in the case of solution II:αF = 0 and no constraint on 2αF + αG. This is the proof. More details
can be found in [7].

2.2 Numerical resolution of the GPDSE

In order to understand better the relationship between these two classes of solutions we have
performed a numerical solution of the GPDSE [8]. Since we consider only one DSE, we need
additional inputs. Our inputs are:

• The gluon propagator is taken from lattice QCD. It is extrapolated to the large momenta
using perturbative QCD formulae and to zero momentum assuming a finite, non zero limit,
as strongly indicated by lattice QCD.

• The ghost-ghost gluon vertex is taken to be constant as justified above from Taylor’s theorem.

• The coupling constant multiplies the vertex function whichwe assume to be constant. This
product, a rescaled coupling constant, is taken as a free parameter.

We then fit this parameter to recover a solution in agreement with the ghost propagator computed
by lattice QCD. This exercize can be performed, mutatis mutandis, with bare quantities or renor-
malized ones. In the latter case we define the rescaled coupling constant by

g̃2 ≡ Ncg
2
Rz̃1H1R (2.3)

wherez̃1 is the vertex renormalisation constant and our renormalisation scale is chosen to be 1.5
GeV.

Our result is thatthere is one critical value of the rescaled coupling constant g̃c
2 = 33.198 for

which the renormalised ghost dressing function diverges atzero momentum, solution I (“scaling"),
while for all smallerg̃2, F(0) is finite, solution II (“decoupling"). Fitting to the valuesof F(k2)

from lattice data gives̃g2 = 29. The plots are shown in fig. 1. Not surprisingly, the plot 2 shows
that the productF2G, proportional to Taylor’s coupling constant, eq. (1.9), goes to a constant for
the criticalg̃c

2 and vanishes for any smallerg̃2, fitting lattice data for̃g2 = 29.

2.3 Expansion of the ghost propagator at small momentum

From the GPDSE one can derive the low momentum expansion of the Ghost dressing function
in the case of solution II [8]. If we assume that the gluon propagator goes to a finite constant, which

5
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0.25 0.5 0.75 1 1.25 1.5q

1

1.5

2

2.5

3

F R
(q

)

dressing function lattice result
best SD solution
singular SD solution

Figure 1: Comparison between the lattice SU(3) data atβ = 5.8 and with a volume 324 for the ghost
dressing function and our continuum SD prediction renormalised atµ = 1.5 GeV for g̃2 = 29. (solid line) ;
the agreement is striking ; also shown is the singular solution which exists only at̃g2 = 33.198.... (broken
line), and which is obviously excluded.

implies thatαT(k2) ∝ k2, it takes a simple form:

FR(k2,µ2) ≃ FR(0,µ2)

(
1+

3̃z1H1R

16π
αT(k2) log(k2)

)

F(k2,Λ) ≃ F(0,Λ)

(
1+

3H1

16π
αT(k2) log(k2)

)

(2.4)

This formula, which can be refined [9], is very useful since itallows an extrapolation of lat-
tice data down to zero momentum. This isan exemple in which an analytic method supports the
numerical one.

3. What do we learn from lattice QCD

This will be a very brief section as everything has been covered in Teresa Mendes’s talk.
Let us just mention recent publications, which present results obtained with particularly large vol-
umes and thus small momenta. What follows concerns bare Green functions at some finite cut-off.
Cucchieri-Mendes have studied theSU(2) case [10]: their fig.2 shows a bending of the ghost dress-
ing function perfectly compatible with solution II (“decoupling"). In [11] they consider theβ = 0
situation and exhibit bounds on the gluon propagator (theirfig. 4). Bogolubsky et al. [6] consider
SU(3): their fig. 2 shows that the gluon propagator goes to a non zeroconstant at zero momentum,
fig. 4 shows also a bending of the ghost dressing function and fig. 5 clearly shows a vanishing of

6
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0,0001 0,001 0,01 0,1 1 10
0

1

2

3

4

k2 [GeV2]

F
2 G

g2=g2
crit

~ 33.197 >

g2=g2
phys= 29. >

Figure 2: Comparison between our lattice SU(3) data atβ = 5.8 and with a volume 324 for the product of
gluon times ghost square dressing functionsGR(k)FR(k)2, renormalised atµ = 1.5 GeV, and the correspond-
ing curve for the continuum singular solutionαG + 2αF = 0, which exists only at̃g2 ≃ 33.198, obviously
excluded. Also shown is our continuum regular solution forg̃2 = 29 (solid line) for which the agreement is
striking.

αT at zero momentum. The general conlusion is that the gluon propagator goes to a non zero con-
stant, the ghost dressing function may go to a finite non zero limit, and Taylor’s coupling constant
clearly vanishes at zero momentum. If the finiteness of the ghost dressing function is today only
an indication, the vanishing of the coupling constant is compelling, thus contradicting solution I
(“scaling"). Now, since the analytic GPDSE method says thatthere exists only these two classes
of solutions, we may conclude that nature has chosen solution II and thus that the ghost dressing
function must indeed go to a finite non zero constant at finite cut-off. As we seethis is an exemple
in which the LQCD numerical method allows to discriminate between two classes of solutions of
the GPDSE.

One remark is in order here. We use the denomination “coupling constant" in a very general
sense: any well defined quantity which in the ultraviolet is asymptotically equivalent to, say,αMS,
is eligible for the denomination “coupling constant".αT defined in eq. (1.9) is obviously one of
those [5]. Is this coupling constant convenient for phenomenological descriptions using tree level
diagrams in the infrared ? presumably no. If one aims at this phenomenology, as do the proponents
of the “pinch technique" [12, 13], one could easily redefine anew eligible coupling constant by
pulling a massive gluon propagator out for the gluon leg amputation of the ghost-ghost-gluon Green
function used to build the coupling [14]. Thusαnew(k2) = αT(k2)(k2 +M2)/k2 whereM could be
the gluon mass2.

4. Can the bare ghost dressing function be finite non zero ?

This question was raised by Kondo’s remark [15, 16] of a relation between thek = 0 values of
the ghost dressing functionF(k), Zwanziger’s horizon functionh(k), Kugo’s functionu(k) [17, 18],

2We thank A.C. Aguilar, D. Binosi, J. Cornwall and J. Papavassiliou for this comment.
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and an additional functionw(k). Applying to this relation Zwanziger’s horizon gap equation and
assuming thatw(0) = 0 he derives the surprising result thatu(0) =−2/3 and F(0)=3, independently
of the cut-off. The questions we will raise are: is this relation exact? does the prediction agree with
lattice ? Is it compatible with renormalisability of QCD ? Our point of view is detailed in [19].

4.1 Kondo’s relations

In this subsection we only consider bare quantities. One solution to the problem of Gribov’s
ambiguity,which was proposed by Zwanziger [20], consists in using the Gribov-Zwanziger parti-
tion function,which aims at restricting the Gribov copies [21] within the Gribov Horizon:

Zγ =

∫
[DA]δ (∂A) det(M) e−SYM + γ

∫
dDxh(x) , (4.1)

for the D-dimensional Euclidean Yang-Mills theory, whereSYM stands for the Yang-Mills action,
M is the Faddeev-Popov operator,

Mab = −∂µDab
µ = −∂µ

(
∂µδ ab+g fabcAc

µ

)
(4.2)

andh(x) is Zwanziger’s horizon function,

h(x) =
∫

dDy g fabcAb
µ(x)(M−1)ce(x,y)g fa f eAf

µ(y) ; (4.3)

that restricts the integration over the gauge group to the first Gribov region, provided that the Gribov
parameter,γ , is a positive number.

One defines then the functionu(k2) which, at vanishing momentum, gives the Kugo-Ojima
parameter, and the functionw(k2) via the following identities.

〈
(

Dab
µ cb

)(
g fcdeAd

νce
)
〉k = − δ T

µνδ ac u(k2) ;

〈ca
(

g fde fAe
νc f
)
〉1PI
k = iδ ad kν

(
u(k2)+w(k2)

)
. (4.4)

From these definitions one obtains [15, 16] and [19]without any hypothesis about u and w,

u(0,Λ) =
F(0,Λ)−1

D−1
−

D
D−1

[
〈h(0)〉k=0

D(N2−1)

]
(4.5)

w(0,Λ) = −1−u(0,Λ) +
1

F(0,Λ)
= −

F(0,Λ)+ (D−2)

D−1
+

1
F(0,Λ)

+
D

D−1

[
〈h(0)〉k=0

D(N2−1)

]

4.2 No finiteF(0,Λ) is possible at large cut-offΛ

If we use Zwanziger’s gap equation:

〈h(x)〉γ =
(
N2−1

)
D . (4.6)

the functionsu(0) andw(0) become, from eq. (4.5), a function of the bareF(0) plotted in Fig. 3.
The current lattice solutions for the bare ghost dressing functions at vanishing momentum lie in-
side the green dotted square.The apparent approximate agreement of lattice results withKondo’s
solution is nevertheless misleading and due to the moderatecut-off value on the lattices.

8
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0 1 2 3 4 5 6 7 8 9 10

F(0,Λ)

-3

-2

-1

0

1

2

3

4

5
u(0,Λ)
w(0,Λ)
u(0,Λ)+w(0,Λ)
Kondo’s solution

Figure 3: The solutions foru(0,Λ) andw(0,Λ) plotted as a function ofF(0,Λ) under the assumption that
the horizon gap equation is valid.

0 1 2 3 4 5 6 7 8 9 10

F(0,Λ)

-3

-2

-1

0

1

2

3

4

5
κ(Λ)
u(0,Λ)
Kondo’s solution
ω(0,Λ)

Figure 4: The same plot shown in fig.3 butw(0,Λ) is required to be zero and the gap equation is relaxed by
a multiplicative factorκ(Λ), as explained in the text.κ(Λ) is plotted on the solid blue line. Again, current
lattice estimates lie inside the green dotted square.
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Indeed let us assume a fixed renormalisedFR(0,µ2). The plot in fig. 3 can then be understood,
as a function of thẽZ3(µ2,Λ) at fixedµ2 as soon as inverse powers ofΛ become negligible in front
of logarithms, since, from eq. (1.3), eq. (1.4),

Z̃3(µ2,Λ) =
F(0,Λ)

FR(0,µ2)
+O(

1
Λ2 ). (4.7)

The large cut-off dependance ofZ̃3 is known to be:

Z̃3(µ2,Λ)

Z̃3(µ2,Λ0)
=

(
log(Λ/ΛQCD)

log(Λ0/ΛQCD)

)9/44

(1+ O (α)) , (4.8)

Z̃3(µ2,Λ) → ∞ whenΛ → ∞.
Then the infinite cut-off limit is the limit at infinity on the horizontal axis of fig. 3. The

particular solution proposed in ref. [15, 16] (black circles), obtained by imposingw(0,Λ) = 0,
corresponds to the intersection ofu+ w and u. It cannot hold wheñZ3 → ∞. Notice that the
hypothesis of a finite bareF(0) with a vanishingFR(0) does not hold either since thenF(0,Λ) =

Z̃3FR(0)+O(1/Λ2) = O(1/Λ2) and consequentlyF(0,Λ) vanishes whenΛ → ∞.
Notice also from fig. 3 that a finitew(0,Λ) is not possible at the large cut-off limit.
We should now take into account that gap equation (4.6) is a consequence of Gribov-Zwanziger

modification of the Yang-Mills action eq. (4.1). This is not what is done in LQCD, although lattice
gauge fixing also restricts the Gribov copies within Gribov’s horizon. Therefore we believe that
condition eq. (4.6) has no reason to be fulfilled in LQCD and maybe not at all in QCD. Let us
defineκ(Λ) such that

〈h(0)〉k=0 = lim
k→0

1
VD

∫
dDx 〈h(x)〉eik·x = κ(Λ)

(
N2−1

)
D . (4.9)

If the gap equation eq. (4.6) is thus relaxed it becomes possible to keepw(0) finite, a result
derived in [22, 23] in the Landau background gauge. We show the solution whenw(0) = 0 on
the fig. 4. Nothing changes concerning the fact that the infinite cut-off limit is at infinity on the
horizontal axis. Our conclusion still remains valid:is not possible to have a finite F(0,Λ) in the
large Λ limit

5. Conclusion

In fig. 5 we perform an extrapolation of the lattice bare ghostdressing function using the
small momentum expansion [19] shortly explained in eq. (2.4) of section 2.3. The data for the two
larger lattice volumes are taken from ref. [6] and the othersfrom refs. [24, 8]. The fit with formula
eq. (2.4) is rather good in its range of validity (small momentum). We also notice that the different
lattice results seem to agree rather well although they correspond to differentβ values i.e. different
lattice spacings. One may feel happy and claim that we have a good scaling invariance.But this is
a wrong statement from a misleading observation.

Indeed, remember that the lattice spacing is the inverse of the cut-off in lattice regularisation.
From eq. (4.8) we know that when the lattice spacing goes to zero, (Λ → ∞), F(0,Λ) ∝ β 9/44. On
the whole range of lattice spacings considered in fig. 5, although the cut-off varies by more that a

10
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R=10.3 [β=5.7(80)]
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Figure 5: Bare ghost dressing function estimated from different lattice data sets. The solid line is for the
best fit with the small-momentum expansion withR(β = 5.7(804)) and the dashed one stands for the best fit
with R(β = 5.7,∞).

factor of 3,β 9/44 varies only by 2.5%. This is why this variation is obscured bystatistical errors3

in fig. 5. This fake “scaling invariance" hides the truth:F(k2,Λ) rises very slowly to infinity when
Λ → ∞ i.e. β → ∞.

Bare values depend dramatically, although slowly, on the cut-off and have no real meaning
unless the cut-off is specified. What makes really sense and has well defined limits at infinite
cut-off (vanishing lattice spacing) are renormalised quantities [2, 3]. If we choose 1.5 GeV as the
renormalisation scale, we get from lattice the gross estimate

F (1.5GeV) ≡ Z̃3 ≃ 1.6 whence FR(0,1.5GeV) ≃ 2.2. (5.1)

Altogether, combining all which has been discussed here, our conclusion concerning the ghost
dressing function is

• The renormalised ghost dressing functionFR(0,µ2) has a finite limit at vanishing momentum,
FR(0,(1.5GeV)2)≃ 2.2. It is a positive decreasing function at small momenta, probably also
decreasing for all momenta.

• The bare ghost dressing functionF(k2,Λ) goes very slowly to infinity at infiniteΛ for all
momenta.

3Indeed there is a trend of the largest cut-off,β = 6.4, to lie above the others, but this is hardly visible.
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