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1. Introduction

A consistent strategy for the subtraction of nonlinearly realized gauge theories order by order
in the loop expansion has been recently proposed in [1]-[7]. The discovery of the Local Functional
Equation [14], encoding the invariance of the SU(2) path-integral Haar measure under local left
SU(2) transformations, has provided a key tool in order to tame the divergences of this class of
theories. The LFE uniquely fixes the dependence of the 1-PI amplitudes involving at least one
Goldstone field (descendant amplitudes) in terms of 1-PI amplitudes with no external Goldstone
legs (ancestor amplitudes). This establishes a very powerful hierarchy among 1-PI Green functions.
While there is an infinite number of divergent descendant amplitudes already at one loop level,
only a finite number of ancestor amplitudes exists order by order in the loop expansion if the Weak
Power-Counting (WPC) condition is fulfilled [2], [3], [7], [11]. In addition to the LFE, the Slavnov-
Taylor (ST) identity must be imposed in order to fulfill the requirement of Physical Unitarity [13].
It should be noted that the ST identity does not yield a hierarchy among 1-PI Green functions
[7]. Thus the LFE provides an essential tool in order to carry out the consistent subtraction of
nonlinearly realized gauge theories. A summary of the formal developments has been given in
R.Ferrari’s talk [8].

The WPC poses stringent constraints on the admissible terms in the tree-level vertex func-
tional. In order to work out these constraints a convenient strategy is first to perform an invertible
change of variables from the original ones to their corresponding SU(2) gauge-invariant counter-
parts (bleached variables). Since the bleached variables are SU(2)-invariant, the hypercharge gen-
erator coincides on them with the electric charge. Therefore any electrically neutral local monomial
depending on the bleached variables and covariant derivatives w.r.t. the U(1) gauge connection Bµ

is allowed on symmetry grounds. The requirement of the validity of the WPC imposes a set of con-
straints among these monomials. It turns out that all the symmetric interactions between ancestor
amplitudes present in the Standard Model are recovered [2], [3] by imposing the symmetries and
the WPC (no anomalous couplings are allowed). On the other hand, two independent mass invari-
ants are possible in the vector meson sector. Therefore the tree-level Weinberg relation between
the Z and W mass does not hold in the nonlinearly realized theory.

2. Bleached Variables

The field content of the electroweak model based on the nonlinearly realized SU(2)L⊗U(1)
gauge group includes (leaving aside the ghosts and the Nakanishi-Lautrup fields) the SU(2)L con-
nection Aµ = Aaµ

τa
2 (τa, a = 1,2,3 are the Pauli matrices), the U(1) connection Bµ , the fermionic

left doublets collectively denoted by L and the right singlets, i.e.

L ∈

{(
lu
L j

ld
L j

)
,

(
qu

L j

Vjkqd
Lk

)
, j,k = 1,2,3

}
,

R ∈

{(
lu
R j

ld
R j

)
,

(
qu

R j

qd
R j

)
, j = 1,2,3

}
. (2.1)

In the above equation the quark fields (qu
j , j = 1,2,3) = (u,c, t) and (qd

j , j = 1,2,3) = (d,s,b) are
taken to be the mass eigenstates in the tree-level lagrangian; Vjk is the CKM matrix. Similarly we
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use for the leptons the notation (lu
j , j = 1,2,3) = (νe,νµ ,ντ) and (ld

j , j = 1,2,3) = (e,µ,τ). The
single left doublets are denoted by Ll

j, j = 1,2,3 for the leptons, Lq
j , j = 1,2,3 for the quarks. Color

indexes are not displayed.
One also introduces the SU(2) matrix Ω

Ω =
1
v
(φ0 + iφaτa) , Ω

†
Ω = 1⇒ φ

2
0 +φ

2
a = v2 . (2.2)

The mass scale v gives φ the canonical dimension at D = 4. We fix the direction of Spontaneous
Symmetry Breaking by imposing the tree-level constraint

φ0 =
√

v2−φ 2
a . (2.3)

The condition 〈Ω〉= 1 cannot be imposed at a generic order of perturbation theory.
The SU(2) flat connection is defined by

Fµ = iΩ∂µΩ
† . (2.4)

The transformation properties under the local SU(2)L transformations are (g is the SU(2)L coupling
constant)

Ω′ = UΩ , B′µ = Bµ ,

A′µ = UAµU† + i
gU∂µU† , L′ = UL ,

F ′
µ = UFµU† + iU∂µU† , R′ = R .

(2.5)

Under local U(1)R transformations one has

Ω′ = ΩV † , B′µ = Bµ + 1
g′ ∂µα ,

A′µ = Aµ , L′ = exp(i α

2 YL)L ,

F ′
µ = Fµ + iΩV †∂µV Ω , R′ = exp(i α

2 (YL + τ3))R .

(2.6)

where V (α) = exp(iα τ3
2 ).

The electric charge is defined according to the Gell-Mann-Nishijima relation

Q = I3 +Y , (2.7)

where the hypercharge operator Y is the generator of the U(1)R transformations (2.6) and I3 is an
abstract object. The introduction of the matrix Ω allows to perform an invertible change of variables
from the original set of fields to a new set of SU(2)L-invariant ones (bleaching procedure). For that
purpose we define

wµ = waµ

τa

2
= gΩ

†AµΩ−g′Bµ

τ3

2
+ iΩ†

∂µΩ ,

L̃ = Ω
†L . (2.8)

Both wµ and L̃ are SU(2)L-invariant, while under U(1)R they transform as

w′
µ = V wµV † , L̃′ = exp(i

α

2
(τ3 +YL))L̃ . (2.9)

I.e. the electric charge coincides with the hypercharge on the bleached fields, as it is apparent from
the comparison of eqs.(2.6), (2.7) and (2.9).
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3. The Weak Power-Counting

Any Lorentz-invariant electrically neutral local monomial built out of the components of
waµ , L̃,R and covariant derivatives w.r.t. Bµ is allowed on symmetry grounds. We further im-
pose the validity of the WPC condition, i.e. the superficial degree of divergence of any 1-PI graph
G with NA gauge boson external legs and NF fermionic legs must be bounded by

d(G ) = (D−2)n+2−NA−NF , (3.1)

where D is the space-time dimension and n is the number of loops. Several comments are in order
here. First of all in D = 4 we see that the number of ancestor divergent amplitudes compatible with
the bound (3.1) increases with the loop order n. Therefore we refer to formula (3.1) as the weak
power-counting condition. Moreover from eq.(3.1) one also sees that the number of divergent
ancestor amplitudes is finite at every loop order. We also notice that the UV dimension of the
fermion fields in one in the nonlinearly realized theory (instead of 3/2 as in the linearly realized
models). The reason is that the gauge-invariant mass terms ld

R j l̃
d
j generate upon expansion in powers

of the Goldstone fields a quadrilinear vertex of the form ld
R jφ

2ld
j which contains two Goldstone

fields. Therefore at one loop level there are logarithmically divergent graphs with four fermionic
external legs [2], [3] which limit the UV dimension of massive fermions to 1.

In the absence of massive neutrinos the WPC condition in eq.(3.1) selects a unique classical
action given by

S = Λ
(D−4)

∫
dDx

(
2Tr

{
−1

4
GµνGµν − 1

4
FµνFµν

}

+M2 Tr
{(

gAµ −
g′

2
Ωτ3BµΩ

†−Fµ

)2
}

+M2 κ

2

(
Tr
{
(gAµ −

g′

2
Ωτ3BµΩ

†−Fµ)τ3
})2

+∑
L

[
L̄
(
i 6∂ +g 6A+

g′

2
YL 6B

)
L
]
+∑

R

[
R̄
(
i 6∂ +

g′

2
(YL + τ3) 6B

)
R
]

+∑
j

[
ml j R̄l

j
1− τ3

2
Ω

†Ll
j−mqu

j
R̄q

j
1+ τ3

2
Ω

†Lq
j

+mqd
k
V †

k j R̄q
k

1− τ3

2
Ω

†Lq
j +h.c.

])
. (3.2)

In D dimensions the doublets L and R obey

γDL =−L γDR = R, (3.3)

being γD a gamma matrix that anti-commutes with every other γµ .
In eq.(3.2) we have introduced the charged combinations

w±
µ =

1√
2
(w1µ ∓ iw2µ) (3.4)
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with U(1) transformation properties

w±′
µ = exp(±iα)w±

µ . (3.5)

The neutral component w3µ is invariant. Therefore one obtains two independent mass terms which
can be parameterized as

M2
(

w+w−+
1
2

w2
3

)
,

M2κ

2
w2

3 . (3.6)

Two mass invariants are expected for the vector mesons, as a consequence of the breaking of the
global SU(2)R invariance induced by the hypercharge. We remark that in the SU(2) nonlinearly
realized Yang-Mills theory the WPC plus the gauge symmetry were compatible with any bilinear
term with no derivatives in the bleached gauge field. The unique diagonal Stückelberg mass term
was recovered by imposing an additional SU(2)R global symmetry.

4. Gauge-fixing and External sources

We adopt a background Landau gauge-fixing in order to preserve the invariance under local
SU(2)L transformations. For the purpose we introduce a background gauge field Vaµ . The ghosts
associated with the SU(2)L symmetry are denoted by ca. Their anti-ghosts are denoted by c̄a,
the Nakanishi-Lautrup fields by ba. It is also useful to adopt the matrix notation c = ca

τa
2 , b =

ba
τa
2 , c̄ = c̄a

τa
2 . The abelian ghost is c0, the abelian anti-ghost c̄0 and the abelian Nakanishi-Lautrup

field b0. The BRST partner of Vaµ is denoted by Θaµ .
We include in the tree-level vertex functional the anti-fields for the SU(2)L BRST transforma-

tion (those for the U(1)R BRST transformation are not required since the Abelian ghost is free in
the Landau gauge). Thus we set

Γ
(0)
GF = Λ

(D−4)
∫

dDx

(
b0∂µBµ − c̄0�c0 +2Tr

{
b∂µAµ − c̄∂

µD[A]µc

+V µ

(
D[A]µb− igc̄D[A]µc− ig(D[A]µc)c̄

)
+Θ

µ D[A]µ c̄
}

+K0φ0

+A∗aµsAµ
a +φ

∗
0 sφ0 +φ

∗
a sφa + c∗asca +∑

L

(
L∗sL+ L̄∗sL̄

))
(4.1)

In the above equation K0 is the source coupled to the solution of the nonlinear constraint (2.3). The
full tree-level vertex functional is finally

Γ
(0) = S +Γ

(0)
GF . (4.2)

The introduction of the external sources in eq.(4.1) allows to provide a functional formulation of
the relevant identities of the theory1

1Γϕ denotes the functional derivative of Γ w.r.t. ϕ
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• the LFE (the x-dependence is understood)

(W Γ)a ≡−1
g

∂µΓVaµ
+ εabcVcµΓVbµ

− 1
g

∂µΓAaµ

+εabcAcµΓAbµ
+ εabcbcΓbb +

Λ(D−4)

2
K0φa +

1
2Λ(D−4) ΓK0Γφa

+
1
2

εabcφcΓφb + εabcc̄cΓc̄b + εabcccΓcb

+
i
2

τaLΓL−
i
2

L̄τaΓL̄−
i
2

L∗τaΓL∗ +
i
2

τaL̄∗ΓL̄∗

+εabcΘcµΓΘbµ
+ εabcA∗cµΓA∗bµ

+ εabcc∗cΓc∗b −
1
2

φ
∗
0 Γφ∗a

+
1
2

εabcφ
∗
c Γφ∗b

+
1
2

φ
∗
a Γφ∗0

= 0 , (4.3)

The nonlinearity of the realization of the SU(2)L gauge group is revealed by the presence of
the bilinear term ΓK0Γφa .

• the ST identity

S Γ≡
∫

dDx

[
Λ
−(D−4)

(
ΓA∗aµ

ΓAµ
a
+Γφ∗a Γφa +Γc∗aΓca

+ΓL∗ΓL +ΓL̄∗ΓL̄

)
+baΓc̄a +ΘaµΓVaµ

−K0Γφ∗0

]
= 0 . (4.4)

• the Abelian ST identity

− 2
g′

Λ
(D−4)�b0−

2
g′

∂
µ δΓ

δBµ
−Λ

(D−4)
φ3K0 +φ2

δΓ

δφ1
−φ1

δΓ

δφ2
− 1

Λ(D−4)

δΓ

δK0

δΓ

δφ3

−φ
∗
3

δΓ

δφ ∗0
+φ

∗
2

δΓ

δφ ∗1
−φ

∗
1

δΓ

δφ ∗2
+φ

∗
0

δΓ

δφ ∗3

+iYLL
δΓ

δL
− iYLL̄

δΓ

δ L̄
+ i(YL + τ3)R

δΓ

δR
− iR̄(YL + τ3)

δΓ

δ R̄

−iYLL∗
δΓ

δL∗
+ iYLL̄∗

δΓ

δ L̄∗
= 0. (4.5)

• the Landau Gauge Equation

Γba = Λ
(D−4)

(
Dµ [V ](Aµ −Vµ)

)
a

(4.6)

which implies the ghost equation

Γc̄a =
(
−Dµ [V ]ΓA∗µ +Λ

(D−4)Dµ [A]Θµ

)
a
, (4.7)

by using the STI (4.4).

Moreover the WPC condition (3.1) can be extended to the full set of fields and external sources
[2], [3]. It can be proven that eq.(3.1) holds to all loop orders [2], [3].
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Despite the fact that both SU(2) and U(1)R are nonlinearly realized, the Ward identity for the
electric charge is linear

− 1
g′

Λ
(D−4)�b0 +

(
− 1

g′
∂

µ δ

δBµ
− 1

g
∂µ

δ

δA3µ

− 1
g

∂µ

δ

δV3µ

+A2µ

δ

δA1µ

−A1µ

δ

δA2µ

+ iQL
δ

δL
− iL̄Q

δ

δ L̄
+ iQR

δ

δR
− iR̄Q

δ

δ R̄

+φ2
δ

δφ1
−φ1

δ

δφ2
+b2

δ

δb1
−b1

δ

δb2
+ c2

δ

δc1
− c1

δ

δc2

+c̄2
δ

δ c̄1
− c̄1

δ

δ c̄2
+V2µ

δ

δV1µ

−V1µ

δ

δV2µ

+Θ2µ

δ

δΘ1µ

−Θ1µ

δ

δΘ2µ

+A∗2µ

δ

δA∗1µ

−A∗1µ

δ

δA∗2µ

+φ
∗
2

δ

δφ ∗1
−φ

∗
1

δ

δφ ∗2
+ c∗2

δ

δc∗1
− c∗1

δ

δc∗2

−iQL∗
δ

δL∗
+ iL̄∗Q

δ

δ L̄∗

)
Γ = 0 . (4.8)

The consequences of eq.(4.8) and of the ST identities on the decoupling of the unphysical modes
in the neutral sector have been discussed in [2].

5. The subtraction procedure

The perturbative expansion is carried out order by order in the number of loops. The LFE
is solved by extending the bleaching technique to the full set of ghost fields and external sources
[2],[3]. The ST identities can be recursively studied order by order in the loop expansion. The
constraints on the divergent ancestor amplitudes are derived by exploiting the nilpotency of the
linearized ST operator S0. One has then to solve a cohomological problem in the space of bleached
variables of finite dimension, due to the WPC condition [9].

Finite higher order symmetric renormalization, allowed by the WPC and the symmetries of
the theory, cannot be reinserted back into the tree-level vertex functional without violating either
the symmetries or the WPC. This fact implies that they cannot be interpreted as additional bona
fide physical parameters [10] (unlike in the chiral effective field theories approach). We adopt the
following Ansatz: minimal subtraction of properly normalized n-loop amplitudes

1
ΛD−4 Γ

(n)

around D = 4 should be performed. This subtraction procedure is symmetric [2], [3], [10]. In this
scheme the γ5 problem is treated in a pragmatic approach. The matrix γ5 is replaced by a new
γD which anti-commutes with every γµ . No statement is made on the analytical properties of the
traces involving γD . Since the theory is not anomalous such traces never meet poles in D−4 and
therefore we can evaluate at the end the traces at D = 4.

In this subtraction scheme the dependence on the scale Λ cannot be removed by a shift of the
tree-level parameters. Hence it must be considered as an additional physical parameter setting the
scale of the radiative corrections.
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6. Conclusions

The electroweak model based on the nonlinearly realized SU(2)⊗U(1) gauge group can be
consistently defined in the perturbative loop-wise expansion. In this formulation there is no Higgs
in the perturbative series.

The present approach is based on the LFE and the WPC. There is a unique classical action
giving rise to Feynman rules compatible with the WPC condition. In particular the anomalous
couplings, which would be otherwise allowed on symmetry grounds, are excluded by the WPC.
Two gauge bosons mass invariants are compatible with the WPC and the symmetries. Thus the
tree-level Weinberg relation is not working in the nonlinear framework.

The discovery of the LFE suggests a unique Ansatz for the subtraction procedure which is
symmetric, i.e it respects all the identities of the theory. A linear Ward identity exists for the
electric charge (despite the nonlinear realization of the gauge group). The strategy does not alter
the number of tree-level parameters apart from a common mass scale of the radiative corrections.

The theoretical and phenomenological consequences of this scenario are rather intriguing. An
Higgs boson could emerge as a non-perturbative mechanism, but then its physical parameters are
not constrained by the radiative corrections of the low energy electroweak processes. Otherwise the
energy scale for the radiative corrections Λ is a manifestation of some other high-energy physics.

Many aspects remain to be further studied. We only mention some of them here. The issue of
unitarity at large energy (violation of Froissart bound) at fixed order in perturbation theory when
the Higgs field is removed can provide additional insight in the role of the mass scale Λ. The elec-
troweak model based on the nonlinearly realized gauge group satisfies Physical Unitarity as a con-
sequence of the validity of the Slavnov-Taylor identity. Therefore violation of the Froissart bound
can only occur in evaluating cross sections at finite order in perturbation theory. This requires the
evaluation of a scale at each order where unitarity at large energy is substantially violated.

The phenomenological implications of the nonlinear theory in the electroweak precision fit
have to be investigated. The ’t Hooft gauge derived for the nonlinearly realized SU(2) massive
Yang-Mills theory should be extended to the SU(2)⊗U(1) nonlinearly realized model [5].

Finally the extension of the present approach to larger gauge groups (as in Grand-Unified mod-
els) could help in understanding the nonlinearly realized spontaneous symmetry breaking mecha-
nism (selection of the identity as the preferred direction in the SU(2) manifold) and the associated
appearance of two independent gauge bosons mass invariants.
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