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1. Motivation and Introduction

In perturbation theory these are always the free propagattich enter into the Feynman
diagrams hence the well known calculation trick known asviliek rotation is always feasible. In
this way the Euclidean and real world -Lorentz (Minkowslgpace results are related through a
well defined analytical continuation. As a consequence efpirturbative technique, looking in
momentum space, the Green's functions (GFs) of given quafitid theory have a real branch
points whose positions can be traced by analyzing the nggiriopagator poles in their possible
convolutions inside the Feynman integrals. The locatiosumh branch points corresponds with
physics — with opening particle threshold production. Far momenta above threshold the GFs
become complex with real and imaginary parts uniquely eeldity well known dispersion and
unitarity relations. Assuming particles can freely progiag the appropriate propagators must have
a real pole and the unitarity relations remain to be validSematrix elements. This, of course
completely follows the idea of LSZ reduction formula whidtates S-matrix and Green's functions
of given theory.

Apart of genuine perturbation theory success in quanturctreldynamics and electroweak
sector of the Standard Model, hadrons built of "light" qusagiain their masses through the approx-
imate dynamical chiral symmetry breaking (DCSB) while thisrsimultaneously a nonperturbative
mechanism which forbids colorless hadrons to disintegi@atmny free quarks (or colored states in
general). Similarly, the brehmstrahlung and consequiept@agation of an on-shell gluon could
be similarly impossible as well. Clearly the phenomena ofB&nd color confinement lie beyond
the access of the perturbation theory, which is based oicleafield duality and which starts to
work with free propagators from the very beginning.

On the other hand the GFs of confined fields are basic elembuailtbhadronic wave functions
form the first principle, i.e. using the original QCD Lagraay degrees of freedom- the quark and
gluon fields. The spectra of all hadrons have timelike sigrea®? > 0 and the masses and and
decays are identified from measurements performed in tHemadd- one time and three space
coordinates forming the Minkowski space. The intentiongngftalk is to mention various non-
perturbative methods which can be or have been used to ¢éwdBkes in strong coupling theories
in Minkowski space. The natural framework is based on thempef QCD Schwinger-Dyson
equations [1, 2, 3].

The standard philosophy of nonperturbatively solved SBEsommon with the lattice the-
ory. This is to start with Euclidean space definitions of Geefinctions and analytically continue
the Euclidean results to the Minkowski space. This is cjealvays possible, even if the ob-
served singularities do not reflect usual assumptions ieghdiy Wick rotation [4]. The SDEs
are selfconsistent- what enters SDEs is output as well- Badelfconsistency of SDEs is more
important in QCD then perturbative analyticity, which istuaranteed in a confining theory at
all. In other words, what can be obtained by analytical cardtion of Euclidean GFs may not
agree with the direct Minkowski solution. That the othemthisually expected singularities appear
when making continuation from Euclidean towards Minkowsgace is a well known fact [5, 6].
However, in order to be able to correctly check the assumptione should be able to compare the
results based on the continuation of the Euclidean modékstive results of the same (as possible)
model directly solved in the Minkowski space. In this talkrepent a direct solution of the SDEs
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in Minkowski space, the first one for QED2+1 , where no anehjtassumptions are made. The
second model | present here is lafge QCD where some assumptions are necessary in order to
make a Minkowski solution possible.

Before doing so | mention some Minkowski SDESs solution wtaok based on the assumption
of validity of Wick rotation.

2. Semi-perturbative methods based on integral representation

Assuming perturbative analyticity of Green's function aram impose Khallen-Lehman rep-
resentation for propagators

GKIR(k :/szip( 2.1
(k) ) k2—MZ2+ie 2.1)

with the important property
/defoee(k) — i 2.2)

Quite independently on the details of the models the momer8DESs can be turned into a
"regular" equations for the continuous part of the Lehmamigit p.(M?) (assuming that the full
p includes also a single delta function corresponding witlssaole of the propagator). Using the
Feynman tricks and some standard algebra one can always trrihe dispersion relation for the
inverse propagator:

—_— 2.3
2_M2+iig’ (2.3)

< 2
G1l= p0|yn+/dM2k oM7)
T
where the selfenergy (mass,polarization, etc.) weighttfon nontrivially depends op.

Propagators are complex above the threshold T and the dpathd o can be extracted by
comparing Re and Im parts of G (for a review see [8]), the adlipptication of the spectral technique
has found its place in the pinch technique study of YangsMhkories [9, 10, 11].

For such Minkowski space calculation the results were adwayailable for small coupling
wherein they are quantitatively comparable with the péidtion theory (note, by construction the
perturbative contribution is always involved in the gam&wever for a large enough coupling
there is observed some disagreement with the assumptipnofl@ven the solution is not feasible
at all [8]. Reconstruction of GFs in the spacelike domainerelp? < 0 in our metric (recaliG, p, o
are primarily obtained at timelike regiomp? > T), see [8]), then using independenglyin (2.1)
ando in (2.3) serves as a simple test of validity of the assumptidegarding modeling of QCD
GFs the observed discrepancy is mild for pinch techniquerghropagator presented in the paper
[13] but becomes a disaster when attempting to find a spesttation for the quark propagator
[12]. These observations suggest that perturbative acidyyis too strong assumption for the QCD
quark propagator and very likely for gluon propagator ad ielbe strict, the position of unusual
singularities necessarily affects the analytical striectaf the other GFs, since they are necessarily
related through the SDES).
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3. QED2+1

QED2+1 is known [14],[15] to be a simple confining theory whior a small number of
flavors posses DCSB. For static (heavy) electrons it possegasithmic confinement if the un-
guenching effect is not going to spoil the single pole of phopropagator [16, 17]. QED2+1 is
also pedagogical example of numerically soluble theory inkdwski space in ladder approxima-
tion of electron SDE [18]. Here we employ Landau gaugefrdl approximation (which is exact
in Euclidean space, but not obvious or clear in Minkowskicg)aln addition what | presented in
the talk | provide a simple derivation for completeness here

The full electron propagator reads

S=S(p%) p + Sp?) (3.1)
B(p) L g — A(p)
A2(p)p>—B2%(p) A2(p)p? —B%(p) ’
where in our approximation

S =

B—m+3g, A=1; (3.2)
3
7o = 2 [ (§n§3s5<k2>e<q2>, (3.3)

whereq=k—p;G=1/¢?. We intend to rewrite Eq. (3.3) into a numerically easilydeé integral
equation. In order to avoid numerical interpolation we khak the arguments of propagators as
integral variables. Here we perform the derivation for tineelike region ofp?, and without loss
of generality we can use the frame wheré= (p,0,0). For this purpose we consider a bit more
general loop integral.

86 p) =i [ Goasi)eid)ka)". 34)

whereq = p— k and where the functionS G are functions only of variablk? andg? respectively
and clearlyN = 0 is sufficient in our case. Itis obvious that all one loop lrdranvariant selfenergy
contributions can be written in terms of considered inte§raany theory). For the space part of
the Lorentz three-vector we can use the usual sphericatiTaies, so the scalar producp reads

k.p = kopo — K/ Blcosp, (3.5)
and for the measure we have

/d3k _ /:dl@/du?\ K| /(;znd(p. (3.6)

As we choose the argument $fas an integration variable, the integral (3.4) can be writtethe
following way

Eor /""/|k|2m25<k2 (ko) 3.7)

2 =K+ p?F2py/k2+ [K2; (3.8)
(k.a)+ = K2F py/K2+ [K[2;
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where we have used the explicit form pf. In the next step we split the integral over to its
spacelike and timelike subregions and change the ordetegration

o 00 0 00 . 00 o
/ d|k||k|/q dk2—>/ dk2/ d|k|+/ dkz/ K] (3.9)
0 — k|2 —o0 VK2 0 0

Consequently we make substitutiqfq — @2 in the first (for the "plus" index) and in the second
(for the "minus" index) term in (3.7) separately, thus gutfor | the following expression:

2, _ P e [ agsier) V2R K"

k2+p? —4p

(1/2(c% +k* = )N
/ /k2+p2 A/Wd )G(e) —4p
2G (1/2( + k2 — p?)N
+/ die k+p2quS(k -

2 (g2 ) (W2 + K- p?)"
+/0 dl(z/kz+p2+2 p2k2 CﬁS(k) ( ) 4p . (3.10)

In what follows we use a more compact notation by relabetihg— g? andg? — o2, further we
can rewrite the boundaries in a fully equivalent manner

(27'[) | _/_ dk2/ dPS(K2)G (1/2( ? 4k — p?)N

4
"ae [CTVI ooy WAP K )N
_/ dkz/kz+p2—2\/W derS(k)G —4p (3.11)

which is the most general expression wheiBas known or not.

G is the free boson propagator in our approximation for whicks >= 0, so the first term
vanishes (we did not consider prescription here, as it has no important effect in this rasd the
¢? integration can be performed analytically leading to thalfexpression for (3.3)

B(p?) = m+—/ dRS,(K2)In (|k+g|) (3.12)

Recall that the same has been derived in [18] by using a hgpertpordinates.

We assume the propagator functions are complex almostwiierg (i.e. there are no pertur-
bative thresholds)

B(p) _ ReC1 +T8C2 _I_irscl—RBCz.
A(PP-Bp) g+ G+c
_ Raci+Tac, irAcl_ RacCz
c+c 2 +C3
= (RA-TAP° - (RE—T3);
= (Ral'ap”—Ralg);
whereR,I" are Re an Im parts of proper GEBs= Ra+ila; B=Rg+ilg.

In this way we get two coupled integral equation Ry; I'g which can be solved by the method
of iterations. These integral equations are regul&® imless g does not vanish.

S =

(3.13)
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Figure 1. Graphical explanation of Minkowski —> Euclidean contiriaatfor ladder QED2+1. The figure
shows the complex plane of the integral variabfk? used in the 1-dim integral SDEs in Minkowski and
Euclidean spaces. The recipe that gives the correct cattonuis based on the integration along the drawn
contour such that we takg,,, — JrexWe going from the first to the second space, albeit Cauchy kefiom
such contour cannot be used, since the function is not hateiioin the interior of the shown curve. The
arc does not contribute as radius goes to infinity becauserdéd lemma.

4. QED2+1 versus QED3

At this point it is quite interesting to compare formally abted expression for Minkowsi8
with its Euclidean counterpartner. Stress the both vagihlp in (3.12) are timelike fourmomenta
since the timelike solution decouple from the spacelike. dhathermore as we will se§; given
by Eq. (3.13) is entirely complex function in the timelike Nbwski subspace.

The conventionally written Euclidean partner (n@e= —p? > 0) is a smooth regular func-
tion

B(PZ)
S(pg) = : (4.1)
PE) = R + B
When using the same approximation it satisfies Wick rotatediéean ladder SDE:
& r k—p|
2y _ & 2
Be(p2) =m- 4 O/ AR (pE)in 1 (42

whereBg is numerically known. It is real, and it stays real even if @flews for a complex valued
propagator (imaginary part is not generated), B is knowrgadntrivial for any coupling which
includes classical chiral symmetmn& 0) case.

Due to the very simple structure of SDEs we can find recipe tmget the first from the
second one, however one cannot say that the first is the aahlgontinuation of the second.
Very formally, the Euclidean ladder SDE can be get by usiregdbntour shown in Fig.1. with
simultaneously continuing external variabpeto the spacelike region as well (explicitige —
—ipm.

Stress here, this continuation is performehout further deforming the contour in Fig. 1
and considering contributions from complex branch poirisesved in [5]. In other words, we
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know the prescription for the transformation of equatiobnmen two different spaces- Minkowski
and Euclidean-, however the timelike Minkowski soluti@mot an analytical continuation of the
Euclidean one. The numerical results on Minkowski QED2+lehlaeen obtained first time in
the paper [18] and here it is presented in figure 2 and 3 Appisyehe mass functiorB would

be non-holomorphic in the beginningf = 0 if one tries to interpret the Euclidean solution as an
Minkowski spacelike solution. Therefore the Wick rotatismot valid here. In the limi€? >> m

we get chiral symmetry breaking pha@g,.., = 88°.

Until now a direct Minkowski solution oB for spacelike argument is unknown to us (at-
tempting to put similar ideas in a game, e.g. using the argwsnef GFs as the integration vari-
ables, we would certainly factorize some singularitieg teenain isolated in different subregions
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of Minkowski space). However to deal with this problem, oae employ correct analytical contin-
uation of the obtained timelike solution (so the strategyoispletely opposite to the standard "text
book" procedure, here we get the timelike solution at firgt tien we can construct the solution
at spacelike region). In given approximation the analyticatinuation is a very straightforward if
one takesn — Ln. The resulting equations reads

N ie2 | - 2kp
B(—p?) _m+74n2\/?0/dk285(k)arcsmm (4.3)

whereS; in the rhs. of Eq. (4.3) is defined in timelike region. The nuiced integration should
also be straightforward and will be done elsewhere.

The second very important observation is that we get no relal ip the electron propagator.
Actually B is complex for all considered (reaf)’? and if bare massn is not very large it has
relatively large non-zero imaginary part preventing thius presence of a real pole. No real pole
implies no free particle solution, which is the simple wayhmonfinement of QED2+1 electron is
reflected by behaviour of the GFs.

5. DCSB in largeN; QCD

Up to date there is no known direct nonperturbative Minkaveglace study of a pure Yang-
Mills theory, e.g. N; = 3 pure gluodynamics. There are attempts in the literatua¢ dlb least
guestioned the analytical structure of GFs in QCD. Seritudysof analytical continuation of the
Euclidean quark propagator performed in [6] shows branéhtpdn the complex plane df. The
branch points are located in the interior and as well as inettierior of Wick rotation contour,
however the positions and number of singularities foundedédp on the details of the interaction.
Recall also that the character of singularities is unknawgeneral, very likely they are not simple
isolated poles. The truncation of SDEs is a necessary ajppation in any case and discussion of
the effect of a truncation is plausible, however it seemteuatural that a strong enough interaction
likely leads to the absence of a real branch point in the gpesgagator. Also the naive numerical
fits and indirect estimates based on the behaviour of Sclwifimctions made for instance in
[7] signaled that the quark propagator has a more compticabalytical structure. Note also that
that the fit used in [7] is in contradiction with the Wick ratai. As in the previous case | am
going to discuss the fermion SDE, but now in 3+1 MinkowskicgdJsing a certain simplification
the model has a confining phase characterized by absenceeaf fermion propagator pole. In
this respect we are confirming proposals by Fukuda, Kugo, [di®] reaching quantitatively very
different result since avoiding using Euclidean spaceutation at intermediate step.

In order to get some first solution we consider laiieQCD. Here the number of massless
quarks is larger then in the nature, decreasing considetat g running, but limited from the
up in order to preserve asymptotic freedom. Here we assuateHiclidean theory is at least a
good guide for the estimate of the magnitude of an effectivening coupling. So for instance
N = 7,8 is a reasonable estimate fd¢ = 3. For this number we still should get chiral symmetry
breaking. Typically in this and similar models the form farcand related effective coupling do not
run but mildly change in the low scale (defined by the low epengiss of the quarks << A) and
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vanishes at high scale in accordance with asymptotic freede basically use this scenario here
we consider the same model as in the paper [21]. It is alsdblmtthese Technicolor (TC) like
model remains viable scenario for electroweak symmetralirg without inclusion of the scalar
Higgs field [22].
In our Minkowski study we model the effective running chasgefollows
for |g?| < A%: arc(g?) =a*;
for |q?| > A%arc(d?) =0,

where constantr* is large enough to get DCSB. This coupling enters the ladolemoximated SDE
which in Landau gauge andl= 1 approximation reads

arc(q?)
@
The general structure of the quark propagator is given aggi(3.13) and the dynamical mass
function is simplyM = B. C is the constant stemming from Casimir of given represesrati Non
Abelian gauge group and the prefactor from the Lorentz amddalgebras.
Minkowski momentum space integral which appears in our StjEst an one more spacelike
dimension extended analoguelafonsidered for QED2+1, here it explicitly reads

4
M(p?) = m+iC / (gn§4&(k) (5.1)

4
16.5p) =i | s G)S(eP) 52)

whereG = "ch—g‘ﬂ in our case.

Lorentz invariance dictates thBt p?) is the function of only? for any choice ofp#, so to get
a solution it seems to be advantageous to use some simpleeabiotonfiguration, for spacelike
pH = (0,0,0, p) while for timelike p? p* = (p,0,0,0).

In the usual Euclidean studies it is desired to use argunwi@ss as an integration variables.
Unfortunately for a spacelikp it leads to factorization of an awfully divergent or singulategrals
which are completely independent on the behaviour of GRderthe integrals . Actually one can
arrive to the following singular integral

for p? <0,

Y A wsgr(2)
I[G,S;p):/ dz /dk2 / +/ i /

-1 0 —o0

k2+p? K2+ p2+2¢/— P2V —K2z

1 1
= _KG(K? 2
Ay a2 CIOT)

_(@-k-p)? (@ -k p?)?
8(v-p)® 2(v/—p%)
so the problem is very badly defined. It is almost redundasaothat in perturbation theory this is
just the Wick rotation with itge prescription which regularize unwanted singularities. #genot
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Figure4: Left panel shows real and imaginary parts of the dynamicalksaparately, the right panel display
the same as previous figure but in log-log scale for the bo#imtity, mass is rescaled Iy,

know a different Minkowski space regularization which me®s all required symmetry (Lorentz
and gauge if required) for spacelikg, however for positivep? one can arrive to a more optimistic
formula, which when used in our SDE (5.1) gives the followingegral equation:

(o]

o iC /m / 2 k2, p?) / 2 k2, p?)
M(P?) = M+ 365 |, di? de?\/A(e?, K2, p?) dqzx/ (02, k2, p?)
k+p

+/ dk2/ AP /A(GR, —k2, pz] $(Q) “TC are(d) . (5.3)
A(a,b,c) = a +b2+c2—2(ab+ac+ bc)

Not similarly to QED2+1 the equation (5.3) remains coupldgthwnknownS; for the space-
like arguments. It requires some further approximationsctviogether with the detail of the
derivation of Eq. 5.3 will be published in the shortly comipgper [20].

The present numerical solution has been obtained for tleeteéfé couplinga* = 1.5 and the
constant prefacto€ has been absorbed into it. Until now we did not perform armdte study
of large parameter space, but we can conclude that we haee akserved nontrivial solution for
exactly zero bare mass= 0. Since the value can be arbitrarily small we were slowlyrdasing

m during the iteration process to a desired value. The bares masused in our calculation is
presented in the figure 5. All results are scaled with respet which is quite natural scale
(recall experimental\g\gD = 450MeV while expecte\technicolor= 1 — 10TeV. The solution we
get is completely stable and in principle we can reach it vaitharbitrary high accuracy. The

most apparent fact is the infrared behaviour, the mass gigg#s to infinity as 1p there, in other

10
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Figure5: On the left panel we plotted the magnitugléin rad) of dynamical quark mass in 3+1 Minkowski
dimension, the phasgis on the right, noté = ||M||€.

words constituent (techni)quark mass (even as absolutee )& not well defined quantity since
limgz_oReM( p?), ImMM(p?) — oo. At the time being we do not know whether this is a patholdgica
feature of the Minkowski metric in used, or it it is a physlgahcceptable scenario for strong
coupling 3+1 dimensional theories. This remains to be aestiloff future studies and confirmations
(based for instance on the bound state solutions).

Further, like in QED2+1, there is no physical pole mass, tlssrfunction is complex pre-
venting the existence of a real pole of the propagator. Ratig the LSZ-reduction formula for S-
matrix, the matrix elements between quark states is zeroeshe limitlim 2 (p? — ) S(p?) =
0 for any considered reai?, or in better words: free quarks do not exist.

To conclude in one sentence, there are many issues to bfeclan future Minkowski space
nonperturbative studies, but the clue to be followed alyemdsts and the perspectives are slowly
opening.
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