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1. Motivation and Introduction

In perturbation theory these are always the free propagators which enter into the Feynman
diagrams hence the well known calculation trick known as theWick rotation is always feasible. In
this way the Euclidean and real world -Lorentz (Minkowski)-space results are related through a
well defined analytical continuation. As a consequence of the perturbative technique, looking in
momentum space, the Green‘s functions (GFs) of given quantum field theory have a real branch
points whose positions can be traced by analyzing the matching propagator poles in their possible
convolutions inside the Feynman integrals. The location ofsuch branch points corresponds with
physics – with opening particle threshold production. For the momenta above threshold the GFs
become complex with real and imaginary parts uniquely related by well known dispersion and
unitarity relations. Assuming particles can freely propagate, the appropriate propagators must have
a real pole and the unitarity relations remain to be valid forS-matrix elements. This, of course
completely follows the idea of LSZ reduction formula which relates S-matrix and Green‘s functions
of given theory.

Apart of genuine perturbation theory success in quantum electrodynamics and electroweak
sector of the Standard Model, hadrons built of "light" quarks gain their masses through the approx-
imate dynamical chiral symmetry breaking (DCSB) while there is simultaneously a nonperturbative
mechanism which forbids colorless hadrons to disintegrateto any free quarks (or colored states in
general). Similarly, the brehmstrahlung and consequential propagation of an on-shell gluon could
be similarly impossible as well. Clearly the phenomena of DCSB and color confinement lie beyond
the access of the perturbation theory, which is based on particle-field duality and which starts to
work with free propagators from the very beginning.

On the other hand the GFs of confined fields are basic element tobuild hadronic wave functions
form the first principle, i.e. using the original QCD Lagrangian degrees of freedom- the quark and
gluon fields. The spectra of all hadrons have timelike signature P2 > 0 and the masses and and
decays are identified from measurements performed in the real world- one time and three space
coordinates forming the Minkowski space. The intentions ofmy talk is to mention various non-
perturbative methods which can be or have been used to evaluate GFs in strong coupling theories
in Minkowski space. The natural framework is based on the setup of QCD Schwinger-Dyson
equations [1, 2, 3].

The standard philosophy of nonperturbatively solved SDEs is common with the lattice the-
ory. This is to start with Euclidean space definitions of Greens functions and analytically continue
the Euclidean results to the Minkowski space. This is clearly always possible, even if the ob-
served singularities do not reflect usual assumptions imposed by Wick rotation [4]. The SDEs
are selfconsistent- what enters SDEs is output as well- and the selfconsistency of SDEs is more
important in QCD then perturbative analyticity, which is not guaranteed in a confining theory at
all. In other words, what can be obtained by analytical continuation of Euclidean GFs may not
agree with the direct Minkowski solution. That the other then usually expected singularities appear
when making continuation from Euclidean towards Minkowskispace is a well known fact [5, 6].
However, in order to be able to correctly check the assumptions, one should be able to compare the
results based on the continuation of the Euclidean models with the results of the same (as possible)
model directly solved in the Minkowski space. In this talk I present a direct solution of the SDEs
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in Minkowski space, the first one for QED2+1 , where no analytical assumptions are made. The
second model I present here is largeNf QCD where some assumptions are necessary in order to
make a Minkowski solution possible.

Before doing so I mention some Minkowski SDEs solution whichare based on the assumption
of validity of Wick rotation.

2. Semi-perturbative methods based on integral representation

Assuming perturbative analyticity of Green‘s function onecan impose Khallen-Lehman rep-
resentation for propagators

GKLR(k) =

∞
∫

0

dM2 ρ(M2)

k2−M2+ iε
(2.1)

with the important property
∞

∫

−∞

dk2Gf ree(k) = −iπ. (2.2)

Quite independently on the details of the models the momentum SDEs can be turned into a
"regular" equations for the continuous part of the Lehmann weightρc(M2) (assuming that the full
ρ includes also a single delta function corresponding with mass pole of the propagator). Using the
Feynman tricks and some standard algebra one can always arrive to the dispersion relation for the
inverse propagator:

G−1 = polyn.+

∞
∫

T

dM2 σ(M2)

k2−M2+ iiε
, (2.3)

where the selfenergy (mass,polarization, etc.) weight function nontrivially depends onρ .

Propagators are complex above the threshold T and the bothρ and σ can be extracted by
comparing Re and Im parts of G (for a review see [8]), the otherapplication of the spectral technique
has found its place in the pinch technique study of Yang-Mills theories [9, 10, 11].

For such Minkowski space calculation the results were always available for small coupling
wherein they are quantitatively comparable with the perturbation theory (note, by construction the
perturbative contribution is always involved in the game),however for a large enough coupling
there is observed some disagreement with the assumption [12], or even the solution is not feasible
at all [8]. Reconstruction of GFs in the spacelike domain, wherep2 < 0 in our metric (recallG,ρ ,σ
are primarily obtained at timelike region (p2 > T), see [8]), then using independentlyρ in (2.1)
andσ in (2.3) serves as a simple test of validity of the assumptions. Regarding modeling of QCD
GFs the observed discrepancy is mild for pinch technique gluon propagator presented in the paper
[13] but becomes a disaster when attempting to find a spectralsolution for the quark propagator
[12]. These observations suggest that perturbative analyticity is too strong assumption for the QCD
quark propagator and very likely for gluon propagator as well (to be strict, the position of unusual
singularities necessarily affects the analytical structure of the other GFs, since they are necessarily
related through the SDEs).
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3. QED2+1

QED2+1 is known [14],[15] to be a simple confining theory which for a small number of
flavors posses DCSB. For static (heavy) electrons it posses alogarithmic confinement if the un-
quenching effect is not going to spoil the single pole of photon propagator [16, 17]. QED2+1 is
also pedagogical example of numerically soluble theory in Minkowski space in ladder approxima-
tion of electron SDE [18]. Here we employ Landau gauge andA= 1 approximation (which is exact
in Euclidean space, but not obvious or clear in Minkowski space). In addition what I presented in
the talk I provide a simple derivation for completeness here.

The full electron propagator reads

S= Ss(p2) 6 p + Sv(p2) (3.1)

Ss =
B(p)

A2(p)p2−B2(p)
; Sv =

A(p)

A2(p)p2−B2(p)
,

where in our approximation

B = m+ ΣB , A = 1 ; (3.2)

ΣB = −2ie2
∫

d3k
(2π)3 Ss(k

2)G(q2) , (3.3)

whereq= k− p ;G= 1/q2. We intend to rewrite Eq. (3.3) into a numerically easily soluble integral
equation. In order to avoid numerical interpolation we shall use the arguments of propagators as
integral variables. Here we perform the derivation for the timelike region ofp2, and without loss
of generality we can use the frame wherepµ = (p,0,0). For this purpose we consider a bit more
general loop integral.

I [S,G,n; p2) ≡ i
∫

d3k
(2π)3 S(k2)G(q2)(k.q)N , (3.4)

whereq = p−k and where the functionsS,G are functions only of variablek2 andq2 respectively
and clearlyN = 0 is sufficient in our case. It is obvious that all one loop Lorentz invariant selfenergy
contributions can be written in terms of considered integral (in any theory). For the space part of
the Lorentz three-vector we can use the usual spherical coordinates, so the scalar productk.p reads

k.p = k0p0−|~k||~p|cosφ , (3.5)

and for the measure we have
∫

d3k =

∫ ∞

−∞
dk0

∫

d|~k||~k|
∫ 2π

0
dφ . (3.6)

As we choose the argument ofSas an integration variable, the integral (3.4) can be written in the
following way

i
(2π)2

∫ ∞

0
d|~k||~k|

∫ ∞

−|~k|

dk2

2
√

k2 +~k2
∑
i=±

S(k2)G(q2
i )(k.q)N ; (3.7)

q2
± = k2 + p2∓2p

√

k2 + |~k|2 ; (3.8)

(k.q)± = k2∓ p
√

k2 + |~k|2 ;

4
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where we have used the explicit form ofpµ . In the next step we split the integral overk2 to its
spacelike and timelike subregions and change the order of integration

∫ ∞

0
d|~k||~k|

∫ ∞

−|~k|2
dk2 →

∫ 0

−∞
dk2

∫ ∞
√
−k2

d|~k|+
∫ ∞

0
dk2

∫ ∞

0
d|~k| . (3.9)

Consequently we make substitution|~k| → q2
± in the first (for the "plus" index) and in the second

(for the "minus" index) term in (3.7) separately, thus getting for I the following expression:

(2π)2

i
I =

∫ 0

−∞
dk2

∫ −∞

k2+p2
dq2

+S(k2)G(q2
+)

(1/2(q2
+ +k2− p2))N

−4p

+
∫ ∞

0
dk2

∫ −∞

k2+p2−2
√

p2k2
dq2

+S(k2)G(q2
+)

(1/2(q2
+ +k2− p2))N

−4p

+
∫ 0

−∞
dk2

∫ ∞

k2+p2
dq2

−S(k2)G(q2
−)

(1/2(q2
− +k2− p2))N

4p

+

∫ ∞

0
dk2

∫ ∞

k2+p2+2
√

p2k2
dq2

−S(k2)G(q2
−)

(1/2(q2
− +k2− p2))N

4p
. (3.10)

In what follows we use a more compact notation by relabelingq2
− → q2 andq2

+ → q2, further we
can rewrite the boundaries in a fully equivalent manner

(2π)2

i
I =

∫ ∞

−∞
dk2

∫ ∞

−∞
dq2S(k2)G(q2)

(1/2(q2 +k2− p2))N

4p

−
∫ ∞

0
dk2

∫ k2+p2+2
√

p2k2

k2+p2−2
√

p2k2
dq2S(k2)G(q2)

(1/2(q2 +k2− p2))N

−4p
(3.11)

which is the most general expression whetherG is known or not.
G is the free boson propagator in our approximation for which< G >= 0, so the first term

vanishes (we did not consideriε prescription here, as it has no important effect in this case) and the
q2 integration can be performed analytically leading to the final expression for (3.3)

B(p2) = m+
ie2

4π2

∫ ∞

0
dk2Ss(k

2)ln
|k− p|
(k+ p)

. (3.12)

Recall that the same has been derived in [18] by using a hyperbolic coordinates.
We assume the propagator functions are complex almost everywhere (i.e. there are no pertur-

bative thresholds)

Ss =
B(p)

A2(p)p2−B2(p)
=

RBc1 + ΓBc2

c2
1 +c2

2

+ i
ΓBc1−RBc2

c2
1 +c2

2

; (3.13)

Sv =
RAc1 + ΓAc2

c2
1 +c2

2

;+i
ΓAc1−RAc2

c2
1 +c2

2

c1 = (R2
A−Γ2

A)p2− (R2
B−Γ2

B);

c2 = (RAΓAp2−RBΓ2
B);

whereR,Γ are Re an Im parts of proper GFs,A = RA + iΓA ; B = RB + iΓB.
In this way we get two coupled integral equation forRB,ΓB which can be solved by the method

of iterations. These integral equations are regular inSunlessΓB does not vanish.

5
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Figure 1: Graphical explanation of Minkowski –> Euclidean continuation for ladder QED2+1. The figure
shows the complex plane of the integral variable

√
k2 used in the 1-dim integral SDEs in Minkowski and

Euclidean spaces. The recipe that gives the correct continuation is based on the integration along the drawn
contour such that we take

∫

Imk →
∫

Rekwe going from the first to the second space, albeit Cauchy lemma for
such contour cannot be used, since the function is not holomorphic in the interior of the shown curve. The
arc does not contribute as radius goes to infinity because of Jordan lemma.

4. QED2+1 versus QED3

At this point it is quite interesting to compare formally obtained expression for MinkowskiB
with its Euclidean counterpartner. Stress the both variablesk, p in (3.12) are timelike fourmomenta
since the timelike solution decouple from the spacelike one. Furthermore as we will seeSs given
by Eq. (3.13) is entirely complex function in the timelike Minkowski subspace.

The conventionally written Euclidean partner (notep2
E = −p2 > 0 ) is a smooth regular func-

tion

Ss(p2
E) =

B(p2
E)

A2(p2
E)p2

E +B2(p2
E)

. (4.1)

When using the same approximation it satisfies Wick rotated Euclidean ladder SDE:

BE(p2
E) = m− e2

4π2

∞
∫

0

dk2
ESs(p2

E)ln
|k− p|
(k+ p)

(4.2)

whereBE is numerically known. It is real, and it stays real even if oneallows for a complex valued
propagator (imaginary part is not generated), B is known to be nontrivial for any couplingewhich
includes classical chiral symmetry (m= 0) case.

Due to the very simple structure of SDEs we can find recipe how to get the first from the
second one, however one cannot say that the first is the analytical continuation of the second.
Very formally, the Euclidean ladder SDE can be get by using the contour shown in Fig.1. with
simultaneously continuing external variablep to the spacelike region as well (explicitlypE →
−ipM .

Stress here, this continuation is performedwithout further deforming the contour in Fig. 1
and considering contributions from complex branch points observed in [5]. In other words, we

6
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Figure 2: Magnitude of electron dynamical mass function
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Figure 3: Phase of dynamical electron massM = |M|eiφM

know the prescription for the transformation of equation between two different spaces- Minkowski
and Euclidean-, however the timelike Minkowski solutionis not an analytical continuation of the
Euclidean one. The numerical results on Minkowski QED2+1 have been obtained first time in
the paper [18] and here it is presented in figure 2 and 3 Apparently, the mass functionB would
be non-holomorphic in the beginningp2 = 0 if one tries to interpret the Euclidean solution as an
Minkowski spacelike solution. Therefore the Wick rotationis not valid here. In the limite2 >> m
we get chiral symmetry breaking phaseφMDCSB = 88o.

Until now a direct Minkowski solution ofB for spacelike argument is unknown to us (at-
tempting to put similar ideas in a game, e.g. using the arguments of GFs as the integration vari-
ables, we would certainly factorize some singularities that remain isolated in different subregions

7
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of Minkowski space). However to deal with this problem, one can employ correct analytical contin-
uation of the obtained timelike solution (so the strategy iscompletely opposite to the standard "text
book" procedure, here we get the timelike solution at first and then we can construct the solution
at spacelike region). In given approximation the analytical continuation is a very straightforward if
one takesln → Ln. The resulting equations reads

B(−p2) = m+
ie2

4π2
√

p2

∞
∫

0

dk2Ss(k)arcsin
2kp

(k2 + p2)
(4.3)

whereSs in the rhs. of Eq. (4.3) is defined in timelike region. The numerical integration should
also be straightforward and will be done elsewhere.

The second very important observation is that we get no real pole in the electron propagator.
Actually B is complex for all considered (real)p2 and if bare massm is not very large it has
relatively large non-zero imaginary part preventing thus the presence of a real pole. No real pole
implies no free particle solution, which is the simple way how confinement of QED2+1 electron is
reflected by behaviour of the GFs.

5. DCSB in large Nf QCD

Up to date there is no known direct nonperturbative Minkowski space study of a pure Yang-
Mills theory, e.g. Nc = 3 pure gluodynamics. There are attempts in the literature that at least
questioned the analytical structure of GFs in QCD. Serious study of analytical continuation of the
Euclidean quark propagator performed in [6] shows branch points in the complex plane ofk2. The
branch points are located in the interior and as well as in theexterior of Wick rotation contour,
however the positions and number of singularities found depends on the details of the interaction.
Recall also that the character of singularities is unknown in general, very likely they are not simple
isolated poles. The truncation of SDEs is a necessary approximation in any case and discussion of
the effect of a truncation is plausible, however it seems quite natural that a strong enough interaction
likely leads to the absence of a real branch point in the quarkpropagator. Also the naive numerical
fits and indirect estimates based on the behaviour of Schwinger functions made for instance in
[7] signaled that the quark propagator has a more complicated analytical structure. Note also that
that the fit used in [7] is in contradiction with the Wick rotation. As in the previous case I am
going to discuss the fermion SDE, but now in 3+1 Minkowski space. Using a certain simplification
the model has a confining phase characterized by absence of a real fermion propagator pole. In
this respect we are confirming proposals by Fukuda, Kugo [19], but reaching quantitatively very
different result since avoiding using Euclidean space calculation at intermediate step.

In order to get some first solution we consider largeNf QCD. Here the number of massless
quarks is larger then in the nature, decreasing considerably low q2 running, but limited from the
up in order to preserve asymptotic freedom. Here we assume that Euclidean theory is at least a
good guide for the estimate of the magnitude of an effective running coupling. So for instance
Nf = 7,8 is a reasonable estimate forNc = 3. For this number we still should get chiral symmetry
breaking. Typically in this and similar models the form factor and related effective coupling do not
run but mildly change in the low scale (defined by the low energy mass of the quarksm<< Λ) and

8
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vanishes at high scale in accordance with asymptotic freedom. We basically use this scenario here
we consider the same model as in the paper [21]. It is also notable, these Technicolor (TC) like
model remains viable scenario for electroweak symmetry breaking without inclusion of the scalar
Higgs field [22].

In our Minkowski study we model the effective running chargeas follows

for |q2| < Λ2 : αTC(q2) = α∗ ;

for |q2| > Λ2αTC(q2) = 0 ,

where constantα∗ is large enough to get DCSB. This coupling enters the ladder approximated SDE
which in Landau gauge andA = 1 approximation reads

M(p2) = m+ iC
∫

d4k
(2π)4 Ss(k)

αTC(q2)

q2 . (5.1)

The general structure of the quark propagator is given againby (3.13) and the dynamical mass
function is simplyM = B. C is the constant stemming from Casimir of given representation of Non
Abelian gauge group and the prefactor from the Lorentz and Dirac algebras.

Minkowski momentum space integral which appears in our SDE is just an one more spacelike
dimension extended analogue ofI considered for QED2+1, here it explicitly reads

I [G,S; p) = i
∫

d4k
(2π)4 G(k2)S(q2) (5.2)

whereG = αTC(q2)
q2 in our case.

Lorentz invariance dictates thatB(p2) is the function of onlyp2 for any choice ofpµ , so to get
a solution it seems to be advantageous to use some simple choice of configuration, for spacelike
pµ = (0,0,0, p) while for timelike p2 pµ = (p,0,0,0).

In the usual Euclidean studies it is desired to use argumentsof GFs as an integration variables.
Unfortunately for a spacelikep it leads to factorization of an awfully divergent or singular integrals
which are completely independent on the behaviour of GFs inside the integrals . Actually one can
arrive to the following singular integral

f or p2 < 0,

I [G,S; p) ≃
∫ 1

−1
dz







∫ ∞

0
dk2

∞sgn(z)
∫

k2+p2

+

∫ 0

−∞
dk2

∞sgn(z)
∫

k2+p2+2
√

−p2
√
−k2z







1
z3

1
k2 +a/z2 K G(k2)S(q2)

K =
(q2−k2− p2)2

8(
√

−p2)3
; a =

(q2−k2− p2)2

2(
√

−p22
)

so the problem is very badly defined. It is almost redundant tosay that in perturbation theory this is
just the Wick rotation with itsiε prescription which regularize unwanted singularities. Wedo not

9
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Figure 4: Left panel shows real and imaginary parts of the dynamical mass separately, the right panel display
the same as previous figure but in log-log scale for the both quantity, mass is rescaled byΛ,

know a different Minkowski space regularization which preserves all required symmetry (Lorentz
and gauge if required) for spacelikep2, however for positivep2 one can arrive to a more optimistic
formula, which when used in our SDE (5.1) gives the followingintegral equation:

M(p2) = m+
iC

16p2π3

∫ ∞

0
dk2







∞
∫

(k+p)2

dq2
√

∆(q2,k2, p2)+

(k−p)2
∫

−∞

dq2
√

∆(q2,k2, p2)

+

∫ 0

−∞
dk2

∫ ∞

−∞
dq2

√

∆(q2,−k2, p2)

]

[Ss(k
2)

αTC(q2)

q2 ; (5.3)

∆(a,b,c) = a2 +b2 +c2−2(ab+ac+bc)

Not similarly to QED2+1 the equation (5.3) remains coupled with unknownSs for the space-
like arguments. It requires some further approximations which together with the detail of the
derivation of Eq. 5.3 will be published in the shortly comingpaper [20].

The present numerical solution has been obtained for the effective couplingα∗ = 1.5 and the
constant prefactorC has been absorbed into it. Until now we did not perform an ultimate study
of large parameter space, but we can conclude that we have never observed nontrivial solution for
exactly zero bare massm= 0. Since the value can be arbitrarily small we were slowly decreasing
m during the iteration process to a desired value. The bare mass we used in our calculation is
presented in the figure 5. All results are scaled with respectto Λ which is quite natural scale
(recall experimentalΛ2Nf

QCD = 450MeV while expectedΛTechnicolor= 1−10TeV. The solution we
get is completely stable and in principle we can reach it withan arbitrary high accuracy. The
most apparent fact is the infrared behaviour, the mass simply goes to infinity as 1/p there, in other

10
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Figure 5: On the left panel we plotted the magnitudeφ (in rad) of dynamical quark mass in 3+1 Minkowski
dimension, the phaseφ is on the right, noteM = ||M||eiφ .

words constituent (techni)quark mass (even as absolute value) is not well defined quantity since
limp2→0ReM(p2), ImM(p2) → ∞. At the time being we do not know whether this is a pathological
feature of the Minkowski metric in used, or it it is a physically acceptable scenario for strong
coupling 3+1 dimensional theories. This remains to be a subject of future studies and confirmations
(based for instance on the bound state solutions).

Further, like in QED2+1, there is no physical pole mass, the mass function is complex pre-
venting the existence of a real pole of the propagator. Following the LSZ-reduction formula for S-
matrix, the matrix elements between quark states is zero, since the limitlimp2→m2(p2−m2)S(p2) =

0 for any considered realm2, or in better words: free quarks do not exist.
To conclude in one sentence, there are many issues to be clarified in future Minkowski space

nonperturbative studies, but the clue to be followed already exists and the perspectives are slowly
opening.
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