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Nonperturbative properties of gluons are studied in SU(3) lattice QCD at the quenched level. The

first subject is a functional-form analysis of the gluon propag@lﬁ?y(x) in the Landau gauge.
We find that the gluon propagatbf, (r) obtained in lattice QCD is well described by the four-
dimensional (4D) Yukawa-type functi@™ /r with m~ 600MeV for the Euclidean 4D distance
r=0.1~1.0fm. In momentum space, the gluon propagflﬁ,(pz) (p=05~3GeV)isfound

to be well approximated with a new-type propagatof@f+ m?)~3/2, which corresponds to 4D

Fourier image of the Yukawa-type function. Associated with the Yukawa-type gluon propagator,

we derive analytical expressions for the zero-spatial-momentum propd@tor the effective
massMef(t), and the spectral functiop(w) of the gluon field. The mass parameterturns
out to be the infrared effective mass of gluons. The obtained gluon spectral fupgtonis
almost negative-definite fap > m, except for a positive-functional peak ato = m. The second

subject is a lattice-QCD determination of the relevant gluonic momentum-component for color
confinement. As a remarkable fact, the string tension is found to be almost unchanged even after
cutting off the high-momentum gluon component above 1.5 GeV in the Landau gauge. In fact,

the relevant gluonic scale for color confinement is concluded to be below 1.5 GeV.

International Workshop on QCD Green’s Functions, Confinement and Phenomenology
September 7-11 , 2009
ECT Trento, Italy

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:suganuma@scphys.kyoto-u.ac.jp

Lattice QCD Analysis for Gluons Hideo Suganuma

1. Introduction

Quantum chromodynamics (QCD) and the gluon figdx) = A% (x)T? € su(3) were first
proposed by Nambu in 196[][just after the introduction of color degrees of freedom. Although
QCD has been established as the fundamental gauge theory of the strong interaction with many
successes, there are still unsolved problems on nonperturbative QCD in the low-energy region.

The analysis of gluon properties is an important key point to clarify the nonperturbative aspects
of QCD [Z. In particular, the gluon propagatare., the two-point Green function is one of the
most basic quantities in QCD, and has been investigated with much interests in various gauges,
such as the Landau gaudg@ [ B 6, [ B B, 10, 11 12 I3 [I4), the Coulomb gaugdlB, 1§, and
the maximally Abelian (MA) gaugdI[d [18], in the context of various aspects of QCD. Dynamical
gluon-mass generatio[19] is also an important subject related to the infrared gluon propagation.
While gluons are perturbatively massless, they are conjectured to acquire a large effective mass as
the self-energy through their self-interaction in a nonperturbative manner. For example, glueballs,
color-singlet bound states of gluons, are considered to be fairly massiv@bout 1.5GeV for the
lowest 0" and about 2GeV for the lowest 2, as indicated in lattice QCD calculatiof&] 1]

In this paper, we study the functional form of the gluon propagator in the Landau gauge in
SU(3) lattice QCD Monte Carlo calculations, especially for the infrared and intermediate region of
r = 0.1~ 1.0fm, which is relevant for the quark-hadron phys[2§ 22, and aim at a nonperturba-
tive description of gluon properties, based on the obtained function form of the gluon propagator.
As another subject, using lattice QCD, we also study the relevant gluonic momentum-component
for color confinement at the quantitative level, by introducing a cut in the momentum &8hce [

2. Formalism for gluon propagator in Landau gauge

In this section, we briefly review the formalism of Landau gauge fixing and the gluon prop-
agator in Euclidean space-time. The Landau gauge is one of the most popular gauges in QCD;
and keeps Lorentz covariance and global(S8{) symmetry. Owing to these symmetries and the
transverse property, the color and Lorentz structure of the gluon propagator is uniquely determined.

In Euclidean QCD, the Landau gauge has a global definition to minimize the global quantity,

R= / A Tr{AL(NAL(X)} = % / AR (X)AR (X), 2.1)

by gauge transformation. The local conditi@pA, (x) = 0 is derived from the minimization d®.
The global quantityr can be regarded as “total amount of the gauge-field fluctuation” in Euclidean
space-time. In the global definition, the Landau gauge has a clear physical interpretation that it
maximally suppresses artificial gauge-field fluctuations relating to gauge degrees of fréeiiom [
We then expect that only the minimal quantum fluctuation of the gluon field survives in the Landau
gauge, and the physical essence of gluon properties can be investigated without suffering from
artificial fluctuations of gauge degrees of freedom.

In lattice QCD, the gauge field is described by the link-varidbjgx) = €29%®) with the
lattice spacinga and QCD gauge couplingg The Landau gauge is defined by the maximization of

Ratt = Z Z ReTiUy(x), (2.2)
X |
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by the gauge transformation. The maximizatiofiRgf; corresponds to the minimization Bfin the
continuum theory, and maximally suppresses the gauge-field fluctuation.
The bare gluon fieI@\ﬁafe(x) € suN;) is defined from the link-variable as

1

ASRE(x) = %iag [Up () UL (x)]

B 1
2iagN;

Tr [Uu(x) —Ul(x)], (2.3)

where the second term is added to mA&@'etraceless. In the Landau gauge, the minimization of
gluon-field fluctuations justifies the expansion by small lattice spazirighe renormalized gluon
field A, (x) is obtained by multiplying a real renormalization faczgrl/z asAy(x) = Z;l/zAf,are(x).

In the Euclidean metric, the gluon propaganjf,(x) is defined by the two-point function as

Dl (%,y) = (AL (AN () = Db (x—). (2.4)

In the coordinate space, we investigate the scalar combination of the gluon propagator

D(r) = 3(Nc21—1)D?‘?* (x) = 3(chl_1)(Ai(x)Aﬁ(0)), (2.5)

as a function of the 4D Euclidean distance [x| = (x,x,)Y/2.

3. Lattice QCD result for the functional form of gluon propagator in Landau gauge

We study the functional form of the gluon propagaddr ) = D% (r) /24 in the Landau gauge
in SU(3) lattice QCD, in the infrared and intermediate regiorr ef (xgXq )2 = 0.1 ~ 1.0fm,
which is the relevant scale of quark-hadron physics. Here, we mainly deal with the coordinate-
space gluon propagat@(r), which is directly obtained from lattice calculations and then more
primary than the momentum-space propagéiop?) = [ d*x éP*D(x). The SU3) lattice QCD
Monte Carlo calculations are performed at the quenched level using the standard plaquette action
with B = 2N./g?=5.7, 5.8, and 6.0, on the lattice size 0f1632, 2F x 32, and 33, respectively.

The lattice spacin@ is found to bea = 0.186,0.152, and (0L04fm, atf3 = 5.7, 5.8, and 6.0,
respectively, when the scale is determined so as to reproduce the string tengion-a427MeV
from the static @ potential 4. Here, we choose the renormalization scalgzat 4GeV for
B = 6.0 [8[@], and make corresponding rescaling 5.7 and 5.8.

Figure 1(a) and (b) show the coordinate-space gluon propa@dtgrand the momentum-
space gluon propagatbx( p?), respectively. Our lattice QCD result Bf p?) is consistent with that
obtained in the previous lattice studig[@], although recent huge-volume lattice stud®g [I2
indicate a suppression of the gluon propagator in the Deep-IR regiard(5GeV), compared with
the smaller lattice result.

First, we consider the coordinate-space propagator of the free massive-vect@dield [

dp .. 1 1 m
Dmas{r) :/(2n)4e Ipxpz_an = E?Kl(mr), (3.1)

with the modified Bessel functio;(mr). For larger, one findsKy(mr) ~ |/5~e ™, and the

massive propagator behavedggs{r) ~ r—3/2e~™ |n Fig.1(a), we add the fit result of the lattice
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Figure 1: (a) Lattice QCD data of the Landau-gauge gluon propagdatoy = D, (x)/24 in coordinate
space af3=5.7, 5.8, and 6.0, and the Yukawa-type functidfawa(r) = Ame ™ /r (solid line) withm=
0.624GeV andA = 0.162. The dash-dotted line denotes a typical example of the massive-vector propagator
Dmas{r). (b) The Landau-gauge gluon propagafxélpz) = ﬁﬁ‘;‘l(pz)/24 in momentum space. The symbols
denote the lattice QCD data At= 6.0, where the momentum is defined@gs= gsin('l“—:). The solid line

denotes the Yukawa-type propagator in the momentum spac®yykawa( p?) = 4AM(p? +m?)—3/2,

data withDmasdr) in the fit-range of = 0.6 ~ 1.0fm. In the IR region, this fit seems well, and the
effective massnis estimated to be about 500MeV. However, as shown in Fig.1(a), the lattice gluon
propagatoD(r) cannot be described wibmas{r) in the whole region of = 0.1 ~ 1.0fm.

By the functional-form analysis of the gluon propagator, we find that the Landau-gauge gluon
propagatoD(r) in the coordinate space is well described by the 4D Yukawa-type fun€@n [

—mr

Dvukawa(r) = AmT (3.2)

with m= 0.624(8)GeV andA = 0.162(2) in the range of = 0.1 ~ 1.0fm, as shown in Fig.1(a).

In Fig.1(b), we add by the solid line the Fourier transformation of the Yukawa-type function
Dvukawa(T), i-€., Dyukawa( p?) = 4AM(p? + m?)~3/2, with the same parametens = 0.624GeV
andA = 0.162 as those used for the coordinate-space gluon propagator. The lattice QCD data of
D(p?) are found to be approximated wibhyawa( p?) in the range ofp < 3GeV, while they seem
to be consistent with the tree-level massless propa@aies p?) = 1/ p? for large p?.

We summarize the functional form of the gluon propagator obtained in SU(3) lattice QCD:

1. The gluon propagatdd(r) in the Landau gauge is well described by the four-dimensional
(4D) Yukawa-type function afH]

1 aa efmr

with m~ 600MeV andA ~ 0.16, in the whole region af= (X4 X4 )2 = 0.1 ~ 1.0fm.

2. The gluon propagatdd(p?) in the momentum space is also well described by the corre-

sponding new-type propagator (4D Fourier transformed Yukawa-type functidbffjas [
~ 1« 41T2Am
2\ aa (n2)

with m~ 600MeV andA ~ 0.16, in the momentum region of8lGeV< p < 3GeV.
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4. Analytical applications of Yukawa-type gluon propagator

In this section, as applications of the Yukawa-type gluon propagator, we derive analytical
expressions for the zero-spatial-momentum propadagh), the effective masMeg(t), and the
spectral functiorp(w) of the gluon field[[4. All the derivations can be analytically performed,
starting from the Yukawa-type gluon propagakawa(r)-

4.1 Zero-spatial-momentum propagator of gluons

First, we consider the zero-spatial-momentum propadagr), associated with the Yukawa-
type propagatoDyykawa(r), Wherer is the 4D Euclidean distance,= VX2 +t2. We define the
zero-spatial-momentum propagafyj(t) of gluons as

1

Do(t) = 242

(A2 (X,t)A2(0,0)) ZD (4.1)

where the spatial momentum is projected to be zero. For the simple argument, we here deal with the
continuum formalism with infinite space-time. Starting from the Yukawa-type gluon propagator,

Am _ Am o
DYukaWa(r) = Te mr = We m X +t 3 (42)
we derive the zero-spatial-momentum propagatofids [
2
— / d°X Dvukawa(r) = 4TTAM / dx——— \/)me—mvxz+t = 4TTAtKy (mt). (4.3)

In Fig.2(a), we show the theoretical curve B§(t) in Eq.A3 with m=0.624GeV and\=0.162,
together with the lattice QCD result 8f(t) in the Landau gauge. For the actual comparison with
the lattice data, we take account of the temporal periodi@@}. [The lattice QCD data are found

to be well described by the theoretical curve, associated with the Yukawa-type gluon propagator.
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Figure 2: (a) The zero-spatial-momentum propagdgft) of gluons in the Landau gauge. (b) The effective
massMeg () of gluons in the Landau gauge. The symbols are the lattice QCD datd'@t32- 6.0, and the
solid line is the theoretical curve derived from the Yukawa-type propagatomwih624GeV and\=0.162.
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4.2 Effective mass of gluons

Second, we investigate the effective mads:(t) of gluons. This method is often used for
hadrons as a standard mass measurement in lattice @@} DHor the simple notation, we use the
lattice unit ofa = 1 in this subsection. In the case of large temporal lattice size, the effective mass
of gluons is defined as

Meft(t) = In{Do(t)/Do(t +1)}. (4.4)

In Fig.2(b), we show the lattice result Met(t), where we take account of the temporal peri-
odicity. The effective gluon mass exhibits a significant scale-dependence, and it takes a small value
at short distances. Quantitatively, the effective gluon mass is estimated to be abeué@0MeV
in the infrared region of about 1ffif]]. This value seems consistent with the gluon mass suggested
by Cornwall ], from a systematic analysis of nonperturbative QCD phenomena.

Now, we consider the consequence of the Yukawa-type propaDaisva(r). For simplicity,
we here treat the three-dimensional space as a continuous infinite-volume space, while the temporal
variablet is discrete. When the temporal periodicity can be neglected, we obtain an analytical
expression of the effective ma&s&]],

Do(t)

Meff(t) =In=— =2~ =In tKa1(mt)

Do(t+1) (t+1)Ke(m(t+1))° (4.5)

In Fig.2(b), we add by the solid line the theoretical curvévig(t) in Eq.@.3) with m=0.624GeV.
The lattice QCD data oMes(t) are found to be well described by the theoretical curve derived
from the Yukawa-type gluon propagator.
From the asymptotic fory(z) O z 1/2e 2, the effective mass of gluons is approximated as
Meﬁ(t)zm—%|n(l+}) :m—% (4.6)
for larget [14]. This functional form indicates thafle;(t) is an increasing function and approaches
m from below, ad increases. Then, the mass parameter 600MeV in the Yukawa-type gluon
propagator has a definite physical meaning of the effective gluon mass in the infrared region.
Note that the simple analytical expression reproduces the anomalous increasing behavior of
the effective masMes(t) of gluons. Thus, this framework with the Yukawa-type gluon propagator
gives an analytical and quantitative method, and is found to well reproduce the lattice QCD result.

4.3 Spectral function of gluons in the Landau gauge

As a general argument, an increasing behavior of the effective Mag$) means that the
spectral function is not positive-definif@ B, 6. More precisely, the increasing propertyM§(t)
can be realized, only when there is some suitable coexistence of positive- and negative-value re-
gions in the spectral functiop(w) [14]. However, the functional form of the spectral function of
the gluon field is not yet known.

From the analytical expression of the zero-spatial-momentum propd@#ty = 41TAtK; (mt),
we can derive the spectral functipriw) of the gluon field, associated with the Yukawa-type gluon
propagator]4]. For simplicity, we take continuum formalism with infinite space-time.
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The relation between the spectral functijpofw) and the zero-spatial-momentum propagator
Do(t) is given by the Laplace transformation,

Do(t) = /owdw p(w) e, @4.7)

When the spectral function is given byaunction such ap(w) ~ d(w— wy), which corresponds
to a single mass spectrum, one finds a familiar relatidDgtf) ~ e~**. For the physical state, the
spectral functiorp(w) gives a probability factor, and is non-negative definite in the whole region
of w. This property is related to the unitarity of the S-matrix.

From an integral representation of the modified Bessel function, we derive the following for-
mulae on the inverse Laplace transformation,

1 CHico
27m</cfioo dt e Kq(t) = (wz_wl)l/ze(w_ 1-¢), (4.8)

L et () = -t B(w—1 1
270 Jo i ) =~ (-0 19+ G

where an infinitesimal positive is introduced for a regularizatioff]. Then, starting from the
Yukawa-type propagator, we derive the spectral functiom) of the gluon field ad14]

o(w—1—¢), (4.9)

4TIA 4TA/V/2m
p(w):—(wz_mrzr;g/ze(w—m—s)JrMQé(w—m—s), (4.10)

with an infinitesimal positivee. Here,m ~ 600MeV is the mass parameter in the Yukawa-type
function for the Landau-gauge gluon propagator. The first term expresses a negative continuum
spectrum, and the second termddunctional peak with the residue including a positive infinite
factor ass~ Y2 atw = m+¢.

o) ——

2
w[m

Figure 3: The spectral functiop(w) of the gluon field, associated with the Yukawa-type propagator. The
unit is normalized by the mass parameter 600MeV. p(w) shows anomalous behaviors: it has a positive
d-functional peak with the residue afeo at w = m, and takes negative values for all the regiorwof m.

We show in Fig.3 the spectral functign(w) of the gluon field. As a remarkable fact, the
obtained gluon spectral function(w) is negative-definite for all the region @ > m, except
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for the positived-functional peak ato = m. The negative property of the spectral function in
coexistence with the positive peak leads to the anomalous increasing behavior of the effective mass
Met(t) of gluons[[4]. Actually, the resulting effective mad4q(t) well describes the lattice result,

as shown in Fig.2(b).

We note that the gluon spectral functipw) is divergent ato = m—+ ¢, and the divergence
structure consists of two ingredientsddunctional peak with a positive infinite residue and a neg-
ative wider power-damping peak. On finite-volume lattices, these singularities are to be smeared,
andp(w) is expected to take a finite value everywherewanOn the lattice, we conjecture that
the spectral functiop(w) includes a narrow positive peak stemming from &é&inction in the
vicinity of w = m (+¢) and a wider negative peak near~ min the region ofw > m [14].

In this way, the Yukawa-type gluon propagator indicates an extremely anomalous spectral
function of the gluon field in the Landau gauge. The obtained gluon spectral furmtionis
negative almost everywhere, and includes a complicated divergence structure near the “anomalous
threshold”, = m (+¢). Thus, this framework with the Yukawa-type gluon propagator gives an
analytical and concrete expression for the gluon spectral funpfjar at the quantitative level.

5. A hypothesis of an effective dimensional reduction in stochastic gluonic vacuum
by the Parisi-Sourlas mechanism

We discuss the Yukawa-type gluon propagation and a possible dimensional reduction due to
the stochastic behavior of the gluon field in the infrared redigh [As shown before, the Landau-
gauge gluon propagator is well described by the Yukawa functidaundimensional Euclidean
space-time. However, the Yukawa functeri™ /r is a natural form irthreedimensional Euclidean
space-time, since it is obtained by the three-dimensional Fourier transformation of the ordinary
massive propagatdip® +n?)~1. In fact, the Yukawa-type propagator has a “three-dimensional”
property. In this sense, as an interesting possibility, we propose to interpret this Yukawa-type
behavior of the gluon propagation as an “effective reduction of the space-time dimension”.

Such a “dimensional reduction” sometimes occurs in stochastic systems, as Parisi and Sourlas
pointed out for the spin system in a random magnetic fH.[In fact, on the infrared dominant
diagrams, thd-dimensional system coupled to the Gaussian-random external field is equivalent
to the(D — 2)-dimensional system without the external field.

color-magnetic fields propagating gluon

Figure 4: A schematic figure for a propagating gluon in the QCD vacuum. The QCD vacuum is filled
with color-magnetic fields which are stochastic at an infrared scale, and the gluon propagates in the random
color-magnetic fields.
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We note that the gluon propagation in the QCD vacuum resembles the situation of the system
coupled to the stochastic external field. Actually, as is indicated by a large positive value of the
gluon condensat(a’sa Ga > > 0 in the Minkowski space, the QCD vacuum is filled with a strong
color-magnetic f|eId|211 29, which can contribute spontaneous chiral-symmetry breal@df [
and the color-magnetic field is considered to be highly random at the infrared B642&] Since
gluons interact each other, the propagating gluon is violently scattered by the other gluon fields
which are randomly condensed in the QCD vacuum at the infrared scale, as shown in Fig.4.

Actually at the infrared scale, the gluon field shows a strong randomness due to the strong
interaction, and this infrared strong randomness is considered to be responsible for color confine-
ment, as is indicated in strong-coupling lattice Q@0][ Even after the removal of the fake gauge
degrees of freedom by gauge fixing, the gluon field exhibits a strong randor@&as¢ompany-
ing a quite large fluctuation at the infrared scale.

As a generalization of the Parisi-Sourlas mechanism, we conjecture that the infrared structure
of atheory in the presence of the quasi-random external field in higher-dimensional space-time has
a similarity to the theory without the external field in lower-dimensional space-fidjeffrom this
point of view, the Yukawa-type behavior of gluon propagation may indicate an “effective reduction
of space-time dimension” by one, due to the stochastic interaction between the propagating gluon
and the other gluon fields in the QCD vacuum, of which net physical fluctuation is highly random
at the infrared scale.

6. Relevant gluonic scale for color confinement

In this section, as another subject, we study lattice-QCD analysis for the relevant gluonic
momentum-component for color confinemdZf][ Here, we formulate a new general lattice frame-
work to extract the relevant gluonic energy scale of each QCD phenomenon by introducing a cut
for link-variables in momentum spad23. Our method consists of the following five steps.

Step 1. Generation of coordinate-space link-variable in the Landau gauge

As usual, we generate a gauge configuration afi kttice with the lattice spacing by the
lattice-QCD Monte Carlo simulation under space-time periodic boundary conditions, and obtain a
finite number of coordinate-space link-variables. Here, we consider the link-variables fixed in the
Landau gauge, which gives a transparent connection between the link-variable and the gauge field,
owing to the suppression of gluon-field fluctuations.

Step 2. Four-dimensional discrete Fourier transformation

By the discrete Fourier transformation, we define the momentum-space link-variable,

ZU“ )exp(iyypvXv), (6.1)

NSIte
whereNsiie is the total number of lattice sites. The momentum-space lattice spacing is given by

21T
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Step 3. Imposing a cut in the momentum space

We impose a cut ortﬂu(p) in a certain region of the momentum space, as schematically
shown in Fig.5. Outside the cut, we repladg(p) by the free-field Iink—variablel,]ﬂee(p) =
ﬁ Sxlexpiy,puXv) = Opo, corresponding ta\,(x) = 0 orU,(x) = 1. Then, the momentum-
space Iink-variablb]{}(p) with the cut is defined as

in Uu(p) (inside cuy
Ug(p) = { U[{ee(‘[l)) = 0po (outside cup. ©2)

R 4 ap

<+

wree

Sy

Figure 5: A schematic figure of the UV cutyy and the IR cuf\|r on momentum-space lattice, with the
lattice spacinga, = 271/(La). The momentum-space Iink-variatil]g,(p) is replaced by the free variable
U/t*®(p) in the shaded cut regions.

Step 4. Inverse Fourier transformation

To return to coordinate space, we carry out the inverse Fourier transformation as

U0 =Y Up(p)exp(—i3, puxv). (6.4)
p

Since thidJ/,(x) is not an SU(3) matrix, we project it onto an SU(3) eleme@(x) by maximizing
ReTl{U,’}(x)TUl’l(x)]. Such a projection is often used in lattice QCD algorithms. By this projection,
we obtain the coordinate-space Iink-variatj@(x) with the cut, which is an SU(3) matrix and has
the maximal overlap o/, (x).

Step 5. Calculation of physical quantities

Using the cut Iink-variabIeJ[,‘(x), instead ofU,(x), we calculate physical quantities as the
expectation value in the same way as original lattice QCD.

With this method in lattice-QCD framework, we quantitatively determine the relevant energy
scale of color confinement, through the analyses oQ@gotential. The lattice QCD Monte Carlo
simulations are performed on“4Bittice at3=5.7, 5.8, and 6.0 at the quenched lef&]|[

10
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Figure 6: (a) TheQ@ potentialV (R) with the IR cutAr plotted against the interquark distariRe(b) The
QQ potential with the UV cuf\yy. The lattice QCD calculation is performed_on“]lﬁttice with3 = 6.0,
i.e, a~0.10 fm anda, = 2r1/(La) ~ 0.77 GeV. The broken line is the origin@Q potential in lattice QCD.

Figure 6 (a) and (b) show t@@potential\/(R) with the IR cutoffA|ir and the UV cutoff\yy,
respectively. We get the following lattice-QCD results on the role of gluon momentum components.

e By the IR cutoffARr, as shown in Fig.6(a), the Coulomb potential seems to be unchanged,
but the confinement potential is largely redudgg]|

e By the UV cutoff Ayy, as shown in Fig.6(b), the Coulomb potential is largely reduced, but
the confinement potential is almost unchand&g.|

T T T T
B=6.0 —e—
3=5.8 —a—i
1} B=5.7 —v— 'i % ,% E
= [ Rl L
S L
®
#
% 05 - .
>
3
5
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0 0.5 1 1.5 2 25 3 35 4
Ayy [GeV]

Figure 7: The Ayy-dependence of the string tensionobtained from the asymptotic slope of tmé
potentialV (R) with the UV cutoff Ayy. The lattice QCD calculations are performed ort Istice with 3
=5.7, 5.8 and 6.0. The vertical error-bar is the statistical error, and the horizontal error-bar the range from
the discrete momentum. The broken line denotes the original value of the string tensiGr89 GeV/fm.

Fig.7 shows thé\yy-dependence of the string tensigrobtained from the asymptotic slope of
the QQ potentialV (R) with the UV cutoffAyy. As a remarkable fact, the string tension is almost
unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. In fact, the
relevant gluonic scale of color confinement is concluded to be below 1.5FV [
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