
P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
4
4

Lattice QCD Analysis for Gluons

Hideo Suganuma ∗, Takumi Iritani, Arata Yamamoto
Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502, Japan
E-mail: suganuma@scphys.kyoto-u.ac.jp

Hideaki Iida

The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

Nonperturbative properties of gluons are studied in SU(3) lattice QCD at the quenched level. The

first subject is a functional-form analysis of the gluon propagatorDab
µν(x) in the Landau gauge.

We find that the gluon propagatorDaa
µµ(r) obtained in lattice QCD is well described by the four-

dimensional (4D) Yukawa-type functione−mr/r with m≃ 600MeV for the Euclidean 4D distance

r = 0.1∼ 1.0 fm. In momentum space, the gluon propagatorD̃aa
µµ(p

2) (p= 0.5∼ 3 GeV) is found

to be well approximated with a new-type propagator of(p2+m2)−3/2, which corresponds to 4D

Fourier image of the Yukawa-type function. Associated with the Yukawa-type gluon propagator,

we derive analytical expressions for the zero-spatial-momentum propagatorD0(t), the effective

massMeff(t), and the spectral functionρ(ω) of the gluon field. The mass parameterm turns

out to be the infrared effective mass of gluons. The obtained gluon spectral functionρ(ω) is

almost negative-definite forω > m, except for a positiveδ -functional peak atω = m. The second

subject is a lattice-QCD determination of the relevant gluonic momentum-component for color

confinement. As a remarkable fact, the string tension is found to be almost unchanged even after

cutting off the high-momentum gluon component above 1.5 GeV in the Landau gauge. In fact,

the relevant gluonic scale for color confinement is concluded to be below 1.5 GeV.
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1. Introduction

Quantum chromodynamics (QCD) and the gluon fieldAµ(x) = Aa
µ(x)T

a ∈ su(3) were first
proposed by Nambu in 1966 [1] just after the introduction of color degrees of freedom. Although
QCD has been established as the fundamental gauge theory of the strong interaction with many
successes, there are still unsolved problems on nonperturbative QCD in the low-energy region.

The analysis of gluon properties is an important key point to clarify the nonperturbative aspects
of QCD [2]. In particular, the gluon propagator,i.e., the two-point Green function is one of the
most basic quantities in QCD, and has been investigated with much interests in various gauges,
such as the Landau gauge [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], the Coulomb gauge [15, 16], and
the maximally Abelian (MA) gauge [17, 18], in the context of various aspects of QCD. Dynamical
gluon-mass generation [2, 19] is also an important subject related to the infrared gluon propagation.
While gluons are perturbatively massless, they are conjectured to acquire a large effective mass as
the self-energy through their self-interaction in a nonperturbative manner. For example, glueballs,
color-singlet bound states of gluons, are considered to be fairly massive,e.g., about 1.5GeV for the
lowest 0++ and about 2GeV for the lowest 2++, as indicated in lattice QCD calculations [20, 21].

In this paper, we study the functional form of the gluon propagator in the Landau gauge in
SU(3) lattice QCD Monte Carlo calculations, especially for the infrared and intermediate region of
r = 0.1∼ 1.0fm, which is relevant for the quark-hadron physics [20, 22], and aim at a nonperturba-
tive description of gluon properties, based on the obtained function form of the gluon propagator.
As another subject, using lattice QCD, we also study the relevant gluonic momentum-component
for color confinement at the quantitative level, by introducing a cut in the momentum space [23].

2. Formalism for gluon propagator in Landau gauge

In this section, we briefly review the formalism of Landau gauge fixing and the gluon prop-
agator in Euclidean space-time. The Landau gauge is one of the most popular gauges in QCD,
and keeps Lorentz covariance and global SU(Nc) symmetry. Owing to these symmetries and the
transverse property, the color and Lorentz structure of the gluon propagator is uniquely determined.

In Euclidean QCD, the Landau gauge has a global definition to minimize the global quantity,

R≡
∫

d4x Tr{Aµ(x)Aµ(x)}=
1
2

∫
d4xAa

µ(x)A
a
µ(x), (2.1)

by gauge transformation. The local condition∂µAµ(x) = 0 is derived from the minimization ofR.
The global quantityRcan be regarded as “total amount of the gauge-field fluctuation” in Euclidean
space-time. In the global definition, the Landau gauge has a clear physical interpretation that it
maximally suppresses artificial gauge-field fluctuations relating to gauge degrees of freedom [14].
We then expect that only the minimal quantum fluctuation of the gluon field survives in the Landau
gauge, and the physical essence of gluon properties can be investigated without suffering from
artificial fluctuations of gauge degrees of freedom.

In lattice QCD, the gauge field is described by the link-variableUµ(x) ≡ eiagAµ (x) with the
lattice spacinga and QCD gauge couplingg. The Landau gauge is defined by the maximization of

Rlatt ≡ ∑
x

∑
µ

ReTrUµ(x), (2.2)
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by the gauge transformation. The maximization ofRlatt corresponds to the minimization ofR in the
continuum theory, and maximally suppresses the gauge-field fluctuation.

The bare gluon fieldAbare
µ (x) ∈ su(Nc) is defined from the link-variable as

Abare
µ (x)≡ 1

2iag

[
Uµ(x)−U†

µ(x)
]
− 1

2iagNc
Tr

[
Uµ(x)−U†

µ(x)
]
, (2.3)

where the second term is added to makeAbare
µ traceless. In the Landau gauge, the minimization of

gluon-field fluctuations justifies the expansion by small lattice spacinga. The renormalized gluon
field Aµ(x) is obtained by multiplying a real renormalization factorZ−1/2

3 asAµ(x)≡Z−1/2
3 Abare

µ (x).
In the Euclidean metric, the gluon propagatorDab

µν(x) is defined by the two-point function as

Dab
µν(x,y)≡ ⟨Aa

µ(x)A
b
ν(y)⟩= Dab

µν(x−y). (2.4)

In the coordinate space, we investigate the scalar combination of the gluon propagator

D(r)≡ 1
3(N2

c −1)
Daa

µµ(x) =
1

3(N2
c −1)

⟨Aa
µ(x)A

a
µ(0)⟩, (2.5)

as a function of the 4D Euclidean distancer ≡ |x| ≡ (xµxµ)
1/2.

3. Lattice QCD result for the functional form of gluon propagator in Landau gauge

We study the functional form of the gluon propagatorD(r)≡ Daa
µµ(r)/24 in the Landau gauge

in SU(3) lattice QCD, in the infrared and intermediate region ofr ≡ (xαxα)
1/2 = 0.1 ∼ 1.0fm,

which is the relevant scale of quark-hadron physics. Here, we mainly deal with the coordinate-
space gluon propagatorD(r), which is directly obtained from lattice calculations and then more
primary than the momentum-space propagatorD̃(p2) =

∫
d4x eip·xD(x). The SU(3) lattice QCD

Monte Carlo calculations are performed at the quenched level using the standard plaquette action
with β ≡ 2Nc/g2=5.7, 5.8, and 6.0, on the lattice size of 163×32, 203×32, and 324, respectively.
The lattice spacinga is found to bea = 0.186,0.152, and 0.104fm, atβ = 5.7, 5.8, and 6.0,
respectively, when the scale is determined so as to reproduce the string tension as

√
σ = 427MeV

from the static Q̄Q potential [24]. Here, we choose the renormalization scale atµ = 4GeV for
β = 6.0 [8, 9], and make corresponding rescaling forβ=5.7 and 5.8.

Figure 1(a) and (b) show the coordinate-space gluon propagatorD(r) and the momentum-
space gluon propagatorD̃(p2), respectively. Our lattice QCD result ofD̃(p2) is consistent with that
obtained in the previous lattice studies [8, 9], although recent huge-volume lattice studies [11, 12]
indicate a suppression of the gluon propagator in the Deep-IR region (p< 0.5GeV), compared with
the smaller lattice result.

First, we consider the coordinate-space propagator of the free massive-vector field [17],

Dmass(r) =
∫

d4p
(2π)4e−ip·x 1

p2+m2 =
1

4π2

m
r

K1(mr), (3.1)

with the modified Bessel functionK1(mr). For larger, one findsK1(mr) ≃
√ π

2mre
−mr, and the

massive propagator behaves asDmass(r)∼ r−3/2e−mr. In Fig.1(a), we add the fit result of the lattice
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Figure 1: (a) Lattice QCD data of the Landau-gauge gluon propagatorD(r) ≡ Daa
µµ(x)/24 in coordinate

space atβ=5.7, 5.8, and 6.0, and the Yukawa-type functionDYukawa(r) = Ame−mr/r (solid line) withm=

0.624GeV andA= 0.162. The dash-dotted line denotes a typical example of the massive-vector propagator
Dmass(r). (b) The Landau-gauge gluon propagatorD̃(p2) = D̃aa

µµ(p
2)/24 in momentum space. The symbols

denote the lattice QCD data atβ = 6.0, where the momentum is defined aspµ = 2
a sin(πnµ

Lµ
). The solid line

denotes the Yukawa-type propagator in the momentum space,i.e., D̃Yukawa(p2) = 4π2Am(p2+m2)−3/2.

data withDmass(r) in the fit-range ofr = 0.6∼ 1.0fm. In the IR region, this fit seems well, and the
effective massm is estimated to be about 500MeV. However, as shown in Fig.1(a), the lattice gluon
propagatorD(r) cannot be described withDmass(r) in the whole region ofr = 0.1∼ 1.0fm.

By the functional-form analysis of the gluon propagator, we find that the Landau-gauge gluon
propagatorD(r) in the coordinate space is well described by the 4D Yukawa-type function [14]

DYukawa(r) = Am
e−mr

r
(3.2)

with m= 0.624(8)GeV andA= 0.162(2) in the range ofr = 0.1∼ 1.0fm, as shown in Fig.1(a).
In Fig.1(b), we add by the solid line the Fourier transformation of the Yukawa-type function

DYukawa(r), i.e., D̃Yukawa(p2) = 4π2Am(p2 +m2)−3/2, with the same parametersm= 0.624GeV
andA= 0.162 as those used for the coordinate-space gluon propagator. The lattice QCD data of
D̃(p2) are found to be approximated with̃DYukawa(p2) in the range ofp≤ 3GeV, while they seem
to be consistent with the tree-level massless propagatorD̃tree(p2) = 1/p2 for largep2.

We summarize the functional form of the gluon propagator obtained in SU(3) lattice QCD:

1. The gluon propagatorD(r) in the Landau gauge is well described by the four-dimensional
(4D) Yukawa-type function as [14]

D(r)≡ 1
24

Daa
µµ(r) = Am

e−mr

r
, (3.3)

with m≃ 600MeV andA≃ 0.16, in the whole region ofr ≡ (xαxα)
1/2 = 0.1∼ 1.0fm.

2. The gluon propagator̃D(p2) in the momentum space is also well described by the corre-
sponding new-type propagator (4D Fourier transformed Yukawa-type function) as [14]

D̃(p2) =
1
24

D̃aa
µµ(p

2) =
4π2Am

(p2+m2)3/2
, (3.4)

with m≃ 600MeV andA≃ 0.16, in the momentum region of 0.5GeV≤ p≤ 3GeV.
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4. Analytical applications of Yukawa-type gluon propagator

In this section, as applications of the Yukawa-type gluon propagator, we derive analytical
expressions for the zero-spatial-momentum propagatorD0(t), the effective massMeff(t), and the
spectral functionρ(ω) of the gluon field [14]. All the derivations can be analytically performed,
starting from the Yukawa-type gluon propagatorDYukawa(r).

4.1 Zero-spatial-momentum propagator of gluons

First, we consider the zero-spatial-momentum propagatorD0(t), associated with the Yukawa-
type propagatorDYukawa(r), wherer is the 4D Euclidean distance,r =

√
x⃗2+ t2. We define the

zero-spatial-momentum propagatorD0(t) of gluons as

D0(t)≡
1
24∑⃗

x

⟨Aa
µ (⃗x, t)A

a
µ (⃗0,0)⟩= ∑⃗

x

D(r), (4.1)

where the spatial momentum is projected to be zero. For the simple argument, we here deal with the
continuum formalism with infinite space-time. Starting from the Yukawa-type gluon propagator,

DYukawa(r) =
Am
r

e−mr =
Am√
x⃗2+ t2

e−m
√

x⃗2+t2
, (4.2)

we derive the zero-spatial-momentum propagator as [14]

D0(t) =
∫

d3x DYukawa(r) = 4πAm
∫ ∞

0
dx

x2
√

x2+ t2
e−m

√
x2+t2

= 4πAtK1(mt). (4.3)

In Fig.2(a), we show the theoretical curve ofD0(t) in Eq.(4.3) with m=0.624GeV andA=0.162,
together with the lattice QCD result ofD0(t) in the Landau gauge. For the actual comparison with
the lattice data, we take account of the temporal periodicity [14]. The lattice QCD data are found
to be well described by the theoretical curve, associated with the Yukawa-type gluon propagator.
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Figure 2: (a) The zero-spatial-momentum propagatorD0(t) of gluons in the Landau gauge. (b) The effective
massMeff(t) of gluons in the Landau gauge. The symbols are the lattice QCD data on 324 atβ = 6.0, and the
solid line is the theoretical curve derived from the Yukawa-type propagator withm=0.624GeV andA=0.162.
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4.2 Effective mass of gluons

Second, we investigate the effective massMeff(t) of gluons. This method is often used for
hadrons as a standard mass measurement in lattice QCD [20]. For the simple notation, we use the
lattice unit ofa= 1 in this subsection. In the case of large temporal lattice size, the effective mass
of gluons is defined as

Meff(t) = ln{D0(t)/D0(t +1)}. (4.4)

In Fig.2(b), we show the lattice result ofMeff(t), where we take account of the temporal peri-
odicity. The effective gluon mass exhibits a significant scale-dependence, and it takes a small value
at short distances. Quantitatively, the effective gluon mass is estimated to be about 400∼ 600MeV
in the infrared region of about 1fm [14]. This value seems consistent with the gluon mass suggested
by Cornwall [2], from a systematic analysis of nonperturbative QCD phenomena.

Now, we consider the consequence of the Yukawa-type propagatorDYukawa(r). For simplicity,
we here treat the three-dimensional space as a continuous infinite-volume space, while the temporal
variablet is discrete. When the temporal periodicity can be neglected, we obtain an analytical
expression of the effective mass [14],

Meff(t) = ln
D0(t)

D0(t +1)
= ln

tK1(mt)
(t +1)K1(m(t +1))

. (4.5)

In Fig.2(b), we add by the solid line the theoretical curve ofMeff(t) in Eq.(4.5) with m=0.624GeV.
The lattice QCD data ofMeff(t) are found to be well described by the theoretical curve derived
from the Yukawa-type gluon propagator.

From the asymptotic formK1(z) ∝ z−1/2e−z, the effective mass of gluons is approximated as

Meff(t)≃ m− 1
2

ln
(
1+

1
t

)
≃ m− 1

2t
(4.6)

for larget [14]. This functional form indicates thatMeff(t) is an increasing function and approaches
m from below, ast increases. Then, the mass parameterm≃ 600MeV in the Yukawa-type gluon
propagator has a definite physical meaning of the effective gluon mass in the infrared region.

Note that the simple analytical expression reproduces the anomalous increasing behavior of
the effective massMeff(t) of gluons. Thus, this framework with the Yukawa-type gluon propagator
gives an analytical and quantitative method, and is found to well reproduce the lattice QCD result.

4.3 Spectral function of gluons in the Landau gauge

As a general argument, an increasing behavior of the effective massMeff(t) means that the
spectral function is not positive-definite [3, 5, 6]. More precisely, the increasing property ofMeff(t)
can be realized, only when there is some suitable coexistence of positive- and negative-value re-
gions in the spectral functionρ(ω) [14]. However, the functional form of the spectral function of
the gluon field is not yet known.

From the analytical expression of the zero-spatial-momentum propagatorD0(t)=4πAtK1(mt),
we can derive the spectral functionρ(ω) of the gluon field, associated with the Yukawa-type gluon
propagator [14]. For simplicity, we take continuum formalism with infinite space-time.

6
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The relation between the spectral functionρ(ω) and the zero-spatial-momentum propagator
D0(t) is given by the Laplace transformation,

D0(t) =
∫ ∞

0
dω ρ(ω) e−ωt . (4.7)

When the spectral function is given by aδ -function such asρ(ω)∼ δ (ω −ω0), which corresponds
to a single mass spectrum, one finds a familiar relation ofD0(t)∼ e−ω0t . For the physical state, the
spectral functionρ(ω) gives a probability factor, and is non-negative definite in the whole region
of ω. This property is related to the unitarity of the S-matrix.

From an integral representation of the modified Bessel function, we derive the following for-
mulae on the inverse Laplace transformation,

1
2π i

∫ c+i∞

c−i∞
dt eωt K1(t) =

ω
(ω2−1)1/2

θ(ω −1− ε), (4.8)

1
2π i

∫ c+i∞

c−i∞
dt eωt tK1(t) =− 1

(ω2−1)3/2
θ(ω −1− ε)+

1

{2(ω −1)}1/2
δ (ω −1− ε), (4.9)

where an infinitesimal positiveε is introduced for a regularization [14]. Then, starting from the
Yukawa-type propagator, we derive the spectral functionρ(ω) of the gluon field as [14]

ρ(ω) =− 4πAm

(ω2−m2)3/2
θ(ω −m− ε)+

4πA/
√

2m

(ω −m)1/2
δ (ω −m− ε), (4.10)

with an infinitesimal positiveε . Here,m≃ 600MeV is the mass parameter in the Yukawa-type
function for the Landau-gauge gluon propagator. The first term expresses a negative continuum
spectrum, and the second term aδ -functional peak with the residue including a positive infinite
factor asε−1/2 at ω = m+ ε.

-3

-2

-1

 0

 1

 2

 0  1  2  3  4  5

ρ(
ω

) 
[m

-2
]

ω [m]

ρ(ω)

Figure 3: The spectral functionρ(ω) of the gluon field, associated with the Yukawa-type propagator. The
unit is normalized by the mass parameterm≃ 600MeV.ρ(ω) shows anomalous behaviors: it has a positive
δ -functional peak with the residue of+∞ at ω = m, and takes negative values for all the region ofω > m.

We show in Fig.3 the spectral functionρ(ω) of the gluon field. As a remarkable fact, the
obtained gluon spectral functionρ(ω) is negative-definite for all the region ofω > m, except

7
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for the positiveδ -functional peak atω = m. The negative property of the spectral function in
coexistence with the positive peak leads to the anomalous increasing behavior of the effective mass
Meff(t) of gluons [14]. Actually, the resulting effective massMeff(t) well describes the lattice result,
as shown in Fig.2(b).

We note that the gluon spectral functionρ(ω) is divergent atω = m+ ε , and the divergence
structure consists of two ingredients: aδ -functional peak with a positive infinite residue and a neg-
ative wider power-damping peak. On finite-volume lattices, these singularities are to be smeared,
andρ(ω) is expected to take a finite value everywhere onω. On the lattice, we conjecture that
the spectral functionρ(ω) includes a narrow positive peak stemming from theδ -function in the
vicinity of ω = m (+ε) and a wider negative peak nearω ≃ m in the region ofω > m [14].

In this way, the Yukawa-type gluon propagator indicates an extremely anomalous spectral
function of the gluon field in the Landau gauge. The obtained gluon spectral functionρ(ω) is
negative almost everywhere, and includes a complicated divergence structure near the “anomalous
threshold”,ω = m (+ε). Thus, this framework with the Yukawa-type gluon propagator gives an
analytical and concrete expression for the gluon spectral functionρ(ω) at the quantitative level.

5. A hypothesis of an effective dimensional reduction in stochastic gluonic vacuum
by the Parisi-Sourlas mechanism

We discuss the Yukawa-type gluon propagation and a possible dimensional reduction due to
the stochastic behavior of the gluon field in the infrared region [14]. As shown before, the Landau-
gauge gluon propagator is well described by the Yukawa function infour-dimensional Euclidean
space-time. However, the Yukawa functione−mr/r is a natural form inthree-dimensional Euclidean
space-time, since it is obtained by the three-dimensional Fourier transformation of the ordinary
massive propagator(p2+m2)−1. In fact, the Yukawa-type propagator has a “three-dimensional”
property. In this sense, as an interesting possibility, we propose to interpret this Yukawa-type
behavior of the gluon propagation as an “effective reduction of the space-time dimension”.

Such a “dimensional reduction” sometimes occurs in stochastic systems, as Parisi and Sourlas
pointed out for the spin system in a random magnetic field [25]. In fact, on the infrared dominant
diagrams, theD-dimensional system coupled to the Gaussian-random external field is equivalent
to the(D−2)-dimensional system without the external field.

Figure 4: A schematic figure for a propagating gluon in the QCD vacuum. The QCD vacuum is filled
with color-magnetic fields which are stochastic at an infrared scale, and the gluon propagates in the random
color-magnetic fields.

8
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We note that the gluon propagation in the QCD vacuum resembles the situation of the system
coupled to the stochastic external field. Actually, as is indicated by a large positive value of the
gluon condensate⟨Ga

µνGa
µν⟩> 0 in the Minkowski space, the QCD vacuum is filled with a strong

color-magnetic field [20, 26], which can contribute spontaneous chiral-symmetry breaking [27],
and the color-magnetic field is considered to be highly random at the infrared scale [26, 28]. Since
gluons interact each other, the propagating gluon is violently scattered by the other gluon fields
which are randomly condensed in the QCD vacuum at the infrared scale, as shown in Fig.4.

Actually at the infrared scale, the gluon field shows a strong randomness due to the strong
interaction, and this infrared strong randomness is considered to be responsible for color confine-
ment, as is indicated in strong-coupling lattice QCD [20]. Even after the removal of the fake gauge
degrees of freedom by gauge fixing, the gluon field exhibits a strong randomness [28] accompany-
ing a quite large fluctuation at the infrared scale.

As a generalization of the Parisi-Sourlas mechanism, we conjecture that the infrared structure
of a theory in the presence of the quasi-random external field in higher-dimensional space-time has
a similarity to the theory without the external field in lower-dimensional space-time [14]. From this
point of view, the Yukawa-type behavior of gluon propagation may indicate an “effective reduction
of space-time dimension” by one, due to the stochastic interaction between the propagating gluon
and the other gluon fields in the QCD vacuum, of which net physical fluctuation is highly random
at the infrared scale.

6. Relevant gluonic scale for color confinement

In this section, as another subject, we study lattice-QCD analysis for the relevant gluonic
momentum-component for color confinement [23]. Here, we formulate a new general lattice frame-
work to extract the relevant gluonic energy scale of each QCD phenomenon by introducing a cut
for link-variables in momentum space [23]. Our method consists of the following five steps.

Step 1. Generation of coordinate-space link-variable in the Landau gauge

As usual, we generate a gauge configuration on aL4 lattice with the lattice spacinga by the
lattice-QCD Monte Carlo simulation under space-time periodic boundary conditions, and obtain a
finite number of coordinate-space link-variables. Here, we consider the link-variables fixed in the
Landau gauge, which gives a transparent connection between the link-variable and the gauge field,
owing to the suppression of gluon-field fluctuations.

Step 2. Four-dimensional discrete Fourier transformation

By the discrete Fourier transformation, we define the momentum-space link-variable,

Ũµ(p) =
1

Nsite
∑
x

Uµ(x)exp(i∑ν pνxν), (6.1)

whereNsite is the total number of lattice sites. The momentum-space lattice spacing is given by

ap =
2π
La

. (6.2)

9
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Step 3. Imposing a cut in the momentum space

We impose a cut oñUµ(p) in a certain region of the momentum space, as schematically
shown in Fig.5. Outside the cut, we replaceŨµ(p) by the free-field link-variable,Ũ free

µ (p) =
1

Nsite
∑x1exp(i∑ν pνxν) = δp0, corresponding toAµ(x) = 0 or Uµ(x) = 1. Then, the momentum-

space link-variablẽUΛ
µ (p) with the cut is defined as

ŨΛ
µ (p) =

{
Ũµ(p) (inside cut)

Ũ free
µ (p) = δp0 (outside cut).

(6.3)

p

p

µ

ν

U～

U～

ΛIR

ap

free
µ

µ

ΛUV

Figure 5: A schematic figure of the UV cutΛUV and the IR cutΛIR on momentum-space lattice, with the
lattice spacingap = 2π/(La). The momentum-space link-variablẽUµ(p) is replaced by the free variable
Ũ free

µ (p) in the shaded cut regions.

Step 4. Inverse Fourier transformation

To return to coordinate space, we carry out the inverse Fourier transformation as

U ′
µ(x) = ∑

p
ŨΛ

µ (p)exp(−i∑ν pνxν). (6.4)

Since thisU ′
µ(x) is not an SU(3) matrix, we project it onto an SU(3) elementUΛ

µ (x) by maximizing
ReTr[UΛ

µ (x)
†U ′

µ(x)]. Such a projection is often used in lattice QCD algorithms. By this projection,
we obtain the coordinate-space link-variableUΛ

µ (x) with the cut, which is an SU(3) matrix and has
the maximal overlap toU ′

µ(x).

Step 5. Calculation of physical quantities

Using the cut link-variableUΛ
µ (x), instead ofUµ(x), we calculate physical quantities as the

expectation value in the same way as original lattice QCD.

With this method in lattice-QCD framework, we quantitatively determine the relevant energy
scale of color confinement, through the analyses of theQQ̄ potential. The lattice QCD Monte Carlo
simulations are performed on 164 lattice atβ=5.7, 5.8, and 6.0 at the quenched level [23].
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ΛUV/ap=10
ΛUV/ap = 8
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Figure 6: (a) TheQQ̄ potentialV(R) with the IR cutΛIR plotted against the interquark distanceR. (b) The
QQ̄ potential with the UV cutΛUV . The lattice QCD calculation is performed on 164 lattice withβ = 6.0,
i.e., a≃ 0.10 fm andap ≡ 2π/(La)≃ 0.77 GeV. The broken line is the originalQQ̄ potential in lattice QCD.

Figure 6 (a) and (b) show theQQ̄ potentialV(R) with the IR cutoffΛIR and the UV cutoffΛUV ,
respectively. We get the following lattice-QCD results on the role of gluon momentum components.

• By the IR cutoffΛIR, as shown in Fig.6(a), the Coulomb potential seems to be unchanged,
but the confinement potential is largely reduced [23].

• By the UV cutoffΛUV , as shown in Fig.6(b), the Coulomb potential is largely reduced, but
the confinement potential is almost unchanged [23].

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

σ a
sy

m
 [G

eV
/fm

]

ΛUV [GeV]

β=6.0
β=5.8
β=5.7

Figure 7: The ΛUV-dependence of the string tensionσ obtained from the asymptotic slope of theQQ̄
potentialV(R) with the UV cutoffΛUV . The lattice QCD calculations are performed on 164 lattice withβ
=5.7, 5.8 and 6.0. The vertical error-bar is the statistical error, and the horizontal error-bar the range from
the discrete momentum. The broken line denotes the original value of the string tensionσ ≃ 0.89 GeV/fm.

Fig.7 shows theΛUV-dependence of the string tensionσ obtained from the asymptotic slope of
theQQ̄ potentialV(R) with the UV cutoffΛUV . As a remarkable fact, the string tension is almost
unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. In fact, the
relevant gluonic scale of color confinement is concluded to be below 1.5 GeV [23].
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