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Figure 1: Conjectured phase diagram of QCD as a function of quark atedmpotentialy and temperature
T, from Wikipedia.

1. Introduction

Just like with water, the form taken by quark matter depemd$sdemperature and its density,
or equivalently the chemical potential coupled to the quarknber. In fact, one should consider
distinct, possibly different chemical potentials coupledhe densities afi,d, ands quarks which
are separately conserved by the strong interactions,gginitotal a 4-dimensional parameter space
with a rich phase diagram. A conjectured two-dimensidpall ) section (where the requirements
of electric neutrality and of beta-equilibrium reduce theee chemical potentials to a single combi-
nation) is proposed Fig. 1, taken from a popular referenbe. Behaviour of QCD in some limiting
cases (highir or largep) can be predicted from perturbation theory thanks to asgtitpireedom,
and theT > 0, u = 0 properties have been well studied on the lattice. Othervebnost all of the
phase diagram Fig. 1 is based on educated guesses awaltdagiva. Putting this phase diagram
on a firm basis is obviously of fundamental importance.

The QCD phase diagram follows from the non-perturbativgertes of the QCD Lagrangian,
and can in principle be determined unambiguously by lattioeulations. Unfortunately, standard
Monte Carlo simulations can only be applied to the- 0 vertical axis in Fig. 1. As is well-known,
for u # 0 the simulations are plagued by the “sign problem”. The psepof this review is to
explain the origin and the nature of the sign problem, ancefmrt on recent progress towards
circumventing it. | have tried both to start from elementaoysiderations and to cover some very
recent, promising developments. This has forced me to skigwing some new work presented
at this Conference, for which | apologize.
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2. Sign problem

The sign problem is a necessary evil, unavoidable as sooneamtegrates out the fermion
fields and expresses the partition function in terms of theygdields. Analytic integration over
each fermion species gives a factor(@et- m+ 1)), wherel) is the massless Dirac operator and
the last term appears when the chemical poteptied non-zero. Now[) satisfiesys-hermiticity:

Dy = DT, so that
¥5(D +m+ pyo)ys = DT+ m— pyp = (B +m— p*y)’ (2.1)

Taking the determinant on both sides gives(Blet m+ Lyp) = det' ([p + m— u*yp), which con-
strains the determinant to be real onlyifs zero or pure imaginary. In such case, an even number
of degenerate flavors (same sameu) yields a non-negative factor in the integration measues ov
the gauge fields, and standard Monte Carlo techniques appé/same is true for pairs of flavors
with opposite, reals, i.e. isospin chemical potential.

In the general case, the determinant may be complex, andtiit faustbe complex to produce
the expected physics. This can be seen by considering theefrergy of a static color charge
or anti-charge, respectively related to the expectatidnevaf the Polyakov loop or its adjoint.
Denoting bydw the integration measure which includes the determinamt.sees that

(Tr Polyakov) = exp(—+Fq) = | Re(Polyakoy x Re(dw)—Im(Polyakoy x Im(dw@) (2.2)
(Tr PolyakoV) = exp(—+Fg) = | Re(Polyakoy x Re(dw)+Im(Polyakoy x Im(dw) (2.3)

Different free energies; andFg, as happens when a chemical potential favors charge ovier ant
charge, can only be obtained if (o) # 0, i.e. with a complex measture

A corollary of the above statement is that any Monte Carl@eride (which is sampled using
a real non-negative measure) has average baryon numbefozgrore imaginary). So the direct
sampling of a finite-density ensemble is not possible. Thram approaches have been pursued to-
wards circumventing this difficulty: reweighting, Tayloxgansion and analytic continuation from
imaginary. 1 will review them in succession, emphasizing their apgilien to the determination
of the pseudo-critical temperatufe(u) and of the QCD critical point.

3. Reweighting

3.1 General results

Let me first illustrate the problem in a toy model. Consider tpartition function”Z(A) =
T2 dxexp(—x? +iAx). SinceZ(A) is real, we can focus on the real part of the integrand, shown
Fig. 2. While the important values &fare clearly near zero when= 0, this is no longer true when
A #0. Large cancellations take place, and integration fartimtdail of the distribution is needed to
obtain the analytic result(A)/Z(0)=exp(—A2/4). The size of the “important” integration region
is governed by, not by the width of the\ = 0 Gaussian. The situation is similar in QCD, where

in the SU(2),N¢ = 2 case, the square of the determinant remains real posiarevehenu # 0. But the baryonic
chemical potential can be turned into an isospin chemic@ntial by a redefinition of the quark fields.
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Figure 2: Toy example of an oscillatory integrand: “evexys important”.

configurations suppressed B(exp(—Volume)) must be properly summed over, as stressed most
forcefully by Splittorff and collaborators [1]. Looselysaking, “every configuration is important”,
and it is not even clear how to sample them.

In general, one may ask the question: given a real, osciylatagegrandf(x), what is the
optimal weightg(x) > 0 which should be used for sampling? Uniform sampling is hetanswer,
since it is clearly wasteful to sample regions whgr&)| is zero or very small. A precise answer
can be obtained by considering how one forms the expectaditue (W) ; of a general observable
W in the desired, target ensemble with partition functigr= [ dx f(x):

AW F(x)  SAXWOOEHI)  (WEg
Wit ="rax i Jdx g (g Gy

This is the strategy akweighting successive measurementd/éf obtained from ordinary Monte
Carlo sampling of the auxiliary partition functiafy = [dx g(x), g(x) > 0, are given a varying,
oscillatory weightf/g in the ensemble average. The denomina(té)yg = Zi/Zy is called the
“average sign”. As we will see shortly, it becomes exporadiytismall as the volume is increased.
In addition, the relative error on the average sign propesyiat every observably. Thereforeg(x)
should be chosen so as to minimize the relative varianck/gf In the limit where the average
sign tends to zero, the solution g§x) = |f(X)| (up to an arbitrary multiplicative constant) [2].
Then, each measurement of the reweighting faéwy gives+1, andZg is often called the “sign
guenched” ensemble.

Since the average sign is a ratio of two partition functidghsan be rewritten as

f Z¢ V
<§>g -2 exp(—?Af(T,)\)> (32)

for a system of volumé&/ at temperaturd’, whereAf is the free energy density difference be-
tween the two ensembles, which depends on the temperatdrth@rcouplings of the theoryu(
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Figure 3: Left Sketch of the QCD pseudo-critical liffg(¢) (in red), starting from- my/3 atT =0, super-
imposed with the phase transition line (in blue) of the pha@senched theory (alias isospin chemical poten-
tial), starting frommy;/2 atT = 0. Bose-Einstein condensation of charged pions in the ptpaseched en-
semble causes a severe sign problBight Comparison of values of the “average phase factexp2i9)),
measured in lattice simulations and predicted by one-ldofakcperturbation theory [5]. Good agreement
persists up td@ /Tc ~ 0.90.

for QCD). This makes clear the dependence of the averageosidgine volume. To maintain sta-
tistical accuracy, the number of independent measuremeumss grow as expr2¥Af (T, 1)), i.e.,
exponentially fast withy.

3.2 Reweighting for QCD

For QCD, the optimal choice of Monte Carlo probability is résfere [Re(det )Nr)| [2, 3].
However, this expression cannot be recast, as customaoy,airGaussian integral for further
stochastic estimation. This causes a considerat{d?) computational overhead. A more ap-
propriate choice is the “phase quenched” ensemble withgitity |det(1)N|. Given eq. (2.1),
this can be rewritten as detu)\/2det{ —u)N1/2, corresponding to an isospin chemical potential
applied toN; /2 pairs of flavorgi, j). This latter form can be readily recast into a Gaussian iateg
and sampled with the usual Rational Hybrid Monte Carlo. Hmvethe chemical potential is now
coupled to allgig; mesons. The lightest among those, the charged pjyymE(using N; = 2 nota-
tion), undergo Bose-Einstein condensation when Li(T), with (T = 0) = my/2, as illustrated
Fig. 3left. Then, the physics of the auxiliary Monte Carlo ensemblfedifqualitatively from that
of the target baryonigt ensemble, which causéd in eq. (3.2) to become large: the sign problem
becomesevere

Remarkably, the average sign is mostly determined by thsighyf pions, for which chiral
perturbation theory, or even random matrix theory, provide accurate analytic description pro-
vided T < mpandu < m,/2. A convenient observable to study is the “average phagerfac

(exp(2i0)) = %Eiﬁfﬁg = Qj‘;‘éﬁﬁgn, whereZ (4, +u) is the target ensemble with chemical po-

tential i, Z(+u,—u) is the auxiliary Monte Carlo ensemble with isospin chempatential, and
(--) is an expectation value with respect to the latter. The obbte (exp(2i6)) measures the
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Figure 4: Left QCD phase diagram from [7] obtained by combined reweighitnu and 3 of the u =

0,8 = B; ensemble (blue dot)Middle: corresponding smallest Lee-Yang zero imaginary paraieel to
the inverse of the specific heat) extrapolated to the theymaaiic limit. Right full data illustrating the
insensitivity tou followed by an abrupt change, courtesy of Z. Fodor.

effect of changing the chemical potential frepu to —u for half of the quark flavors, or equiv-
alently the corresponding fermion boundary conditions urtliElean time. It is thus ultra-violet
finite and can be estimated using continuum chiral pertimbdaheory. Comparison between an-
alytic and numerical lattice QCD results shows good agre¢ngawen at rather high temperatures
not far fromT, [5]: see Fig. Jight.

Pion condensation is a consequence of choosing to samplenteMiarlo ensemble with
isospin chemical potential. One may wonder if the sevene gigblem could not be avoided with
another choice of Monte Carlo ensemble, eLg= 0. However, it is still because of thahaseof
the reweighting factor that pion condensationfior m;;/2 does not occur. Additional fluctuations
in its magnitude only cause the evaluation of the averagetsidpe even more noisy, and the sign
problem even more severe. In addition, a pernicious effextis: the distribution of the reweight-
ing factor becomes broader and non-Gaussian, which ma&estiysis of the statistical error less
reliable. Moreover, the necessarily finite Monte Carlo skenmpay contain zero configurations in
the region which is most important for the target ensembihés lBads to wrong results, because the
underestimated statistical error does not reflect the ldegetion from the correct answer. Failure
of reweighting may go undetected, as in the unfortunate S@& method” [6].

In spite of these difficulties, reweighting has producedralfaark result [7], with a determi-
nation of the pseudo-critical temperatulg ) and of a critical point (see Fig. 4) for QCD with
physical quark masses, on Bin= 4 (4 time-slicesa ~ 0.3 fm) lattice. The Monte Carlo ensem-
ble chosen(u = 0,8 = B.(¢ = 0)), was sub-optimal, yet vastly superior to the earlier “Gtagg
method” which kepi fixed [6]. Still, one may question whether the statisticabgrwhich one
would expect to grow exponentially with?, is reliably evaluated. Doubts are fueled by the ob-
servation of [8] that the critical point is located near tkéraated boundary to the pion-condensed
phase (Fig. 3eft), and that the system appears insensitiva tmtil very close to the critical point
(Fig. 4, right). Six years onward, this issue is still notlget, in spite of the authors’ own efforts to
devise a more reliable error estimation [9], and doubts atheudetermination of the critical point
linger on.

Progress is continuing in the analytic estimation of theraye sign. Recent work includes
the influence of the topological sector at finfte[12], and the determination of thdistribution
of the phase of the determinant, as well as its correlatiadh various observables like the baryon
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Figure 5: Isolines of the average sign in thg,(T’) plane for a random matrix model [10] and in the (den-
sity, B) plane forNs = 8 simulations [11].

number [13]. Even a random matrix model with a critical pdit®] gives a description of the
sign problem roughly consistent with numerical reweigiptihil]: compare Fig. 3eft andright.
One should note that pion interactions do not play a majerirothe determination of the average
sign. On the other hand, taking the baryons into accountaugd the description (and turns out
to make the sign problem less severe). This can be accoraglish describing the two systems
(baryonicu and isosping) by a non-interacting hadron resonance gas. A fit of latticeukation
results to such an ansatz [14] works well. Interestinglg ocan then in turpredictthe maximum
baryon number which can be included in a lattice by rewenigjtior an average sign of, sayl®r
greater. For practical lattice sizes, this numbef{40) (and decreases for lighter quarks), which
is barely sufficient for a statistical treatment.

4. Taylor expansion

As we have seen, reweighting is limited to small volumes, imthreakdown is difficult to
detect. It may be more useful and efficient to try and detegtriim the thermodynamic limit, the
first few Taylor coefficients in the expansion of an arbitralyservable in powers gi/T about
u = 0. In particular, one may consider the pressi(&, 1), since all thermodynamic properties
can be extracted from its derivatives. Definig(T,u) = P(T, u) — P(T,u = 0), one expands

AP(T,p) & p 2
== k;CZK(T) <?> (4.1)
cox = (Tr(degree R polynomial in3 1, %)M—O 4.2

where the Taylor coefficients, can be expressed as expectation values of traces of malyix po
nomials in theu = 0 ensemble. The trace of each monomial can then be estimpatée btandard
stochastic averaging over “noise vectors”. This strategks$ straightforward, and indeed works
well at low orders: see Fig. 6 [15]. Notice however how theistiaal errors grow with the Taylor
order. Since one must go to higher ordeys increased, to keep the truncation error of the Taylor
expansion under control, an essential practical questiohaw does the work increase with the
orderk ?

The answer has several parts, and a full complexity anahgsisot been carried out yet:
e The number of terms in the degrele ®lynomial grows approximately asg16].
e The Taylor coefficienty has a finite thermodynamic limit, but the monomials in eq)4row



Finite mu Philippe de Forcrand

0.25 T T T T T T 0.10

1.00 | ¢ c Ce
2 SB limit 4 jﬁ‘
< 020y f | 0.05 |
0.80 | oo [ |
d@ﬁ [
015 | <§> ‘
0.60 I ] o
f ] [ 0.00
SB (N=4) 0.10 | 03 ] (%

0.40 | (*‘4

7

SB limit -0.05
——

&
/ m\@\\@”—@,,,
0.20 t ] 0.05 t % S-Sl
T, TIT, SB (N=4) Ty

0.00 0.00 0 : : : : : :
08 10 12 14 16 18 20 08 10 12 14 16 18 20 08 10 12 14 16 18 20

Figure 6: First three coefficients in the Taylor expansion of the QC8spure eq. (4.1) versdiy T. [15].

asVZ, implying large cancellations, which can only be contrbllgy a large (exponential ik)
increase withv in the number of noise vectors. This is where the complexitgxp(V) of the
reweighting approach resurfaces. After all, the undeghgtrategy is an extrapolation jnat fixed
B, much like the Glasgow method.
e The distribution of the values whose average yi@gds less and less Gaussiankascreases.
e Finite-size effects grow witk, sincecy is analogous to ak2point function.
These considerations should lead us to expect steady,dwipsbgress in the expansion to higher
order. In my opinion, increasingby one requires increasing computer resources by well @xer t
orders of magnitude. The current state of the akqis,= 4 (8" order expansion) on a, = 6
lattice [17].

In this situation, it is worth exploring alternative metisotb obtain the Taylor coefficients.
These are based on simulations at imaginary chemical paitent

5. Imaginary u

The strategy is simple: perform independent simulatiordifigrent values of the imaginary
chemical potentiali = i;, fit the results with an ansatz, and analytically continueahsatz to real
u. If the ansatz is polynomial, the fit parameters are the uBapbr coefficients. Although this
approach has been used mostly to determine the pseudmicrimperaturd.(u), it has also been
applied to the pressure, yielding the same Taylor coeffisieR as in eq. (4.2). A recent study [14]
is illustrated Fig. 7. At low temperature, the pressure istlmescribed by a hadron resonance
gas ansatz. Fof > 0.95T, this ansatz becomes poor, and a better description isneltdly a
Taylor expansion, which is sensitive ¢g. Similar observations have been made in Ref. [18] on a
smaller lattice. A technical difference is that Ref. [14]aseres only the quark density, i.e. the first
derivative of the pressure, as a function of imaginary quantt isospin chemical potentials both,
while Ref. [18] measures all derivativesii, g up to 4th order, but as a function of quark chemical
potential only. It would make sense to marry the two appreaclderivatives up to 4th order are
easy to compute, and imaginary isospin chemical poteritailghtforward to implement. Another
important technical issue should be addressed: how to ehibessimulated values of imaginary
chemical potential and the statistics for each value, so asiimize the accuracy on a given set of
Taylor coefficients? Larger values gf increase the sensitivity to the desired higher-order terms
but also the truncation error in the fitted Taylor polynomial



Finite mu Philippe de Forcrand

Figure 7: Imaginary quark density as a function of imaginary quark modpin chemical potentials, for
temperatures .9T. (leff) and 125T. (right), from [14]. The surfaces represent hadron resonance ghs an
polynomial fits, respectively.

6. Results:Te(u)

The pseudo-critical temperature can be determined in atyaof ways. As illustrated Fig. 8
left, all determinations agree for smal)T. In particular, the curvature in the Taylor expansion

T(w) _ Mo\
-0+ & (o) ©

can be determined by the most economical method, which seeelnesthat of analytic continuation
from imaginaryu. While in the past, coarse lattices with = 4 and 6 time-slices only have been
considered, this year has seen remarkable progress, with exirapolation to the continuum limit
for physical quark masses [19]. Usihg= 4,6,8 and 10 lattices and an imaginguymethod, this
study confirms earlier indications that the curvature ofgheudo-critical line decreases as-

0 [4] and is small [20] compared to that of the freeze-out eudefined as the fireball temperature
below which inelastic collisions stop taking place and tkhbemical”, hadronic composition of
the fireball decay products remains frozen. Since one hassaavrer au = 0, T, depends on the
observable considered, and so does the curvature. Stilbsérvables yield a curvature smaller
than that of the freeze-out curte~ 2 [21].

This result is of phenomenological importance. As seen &right, a flatter pseudo-critical
line T¢(u) increases the distance from the putative QCD critical ptonthe freeze-out curve,
giving more time for a possible signature of criticality te twashed out as the fireball expands
before hadronization. Note, however, that the deternonatif the freeze-out curve is still being
debated (compare [21] with, e.g., [22, 23]).

The difficulties of determining subleading coefficietg k > 1 in the expansion eq. (6.1)
has been considered in [25], using the imaginargpproach in cases free of sign probles(2)
and SU(3) with isospin 1) where the analytic continuation to reglcan be checked against a
direct determination. For real, the pseudo-critical lind¢(u) bends down more and more with
increasingu. This indicates that the coefficierttg are positive. Unfortunately, for imaginapythe
Taylor series is then alternating. Successive contribatiargely cancel each other, and thes
are poorly determined, as illustrated Fig. 9. Technicalasslike the best strategy for choosing
simulation points and the best choice of fitting ansatz aisy to be explored.
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Figure 8: (Left) Pseudo-critical temperature determined by various aares for the same lattice theory
(4-flavor staggered quarks with mass= 0.05 on an\; = 4 lattice) [24]. All approaches agree foy T<1.
(Righ) Effect of a small curvature of the pseudo-critical tempemT.(u): the distance from the putative
critical point to the freeze-out curve increases, and agiyatire of the critical point tends to be washed out.
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Figure 9: Analytic continuation of the pseudo-critical link(u): for imaginary u the Taylor series is
alternating, making the determination of the subleadingorecoefficients difficult [25].

7. Results: critical endpoint

Assume that the phase diagram of QCD features a criticat ppin Te ), as marked by the star
in Fig. 1. This critical point may or may not lahiral. A chiral critical point belongs to the chiral
critical surface, swept by the =0 chiral critical line in the lower left corner of Fig. 16ftasu is
turned on. A chiral critical point can be broughtte-0 by tuning the quark masses, otherwise not.

A general strategy to locate the QCD critical point, chirahot, is shown by the first arrow
Fig. 10right: one looks for a singularity ip, keeping the quark masses fixed. All such approaches,
except for the reweighting study of Fodor and Katz [26, Bpdteep the temperature fixed. One
then has to address the delicate question of how to corrdetlgrmine the temperatuiie. For
a chiral critical point, an alternative is to stay on theical surface (second arrow Fig. tight),
where the critical temperature is implicitly defined as action of u and the quark masses. |
review these two strategies in succession.

10



Finite mu Philippe de Forcrand

Real world ——
Ni=2 H

2nd order

y o4z 2nd order \_
Z(2) :
tric .
s TNg=3
Nf =1
ms crossover s
0
2nd order
¥ 22 —
. LY
if chiral CEP

0 m,,mgy oo

Figure 10: (Left) Order of theu = O finite temperature transition as a function of the light atndnge quark
masses. Righ?) Two strategies to reach the chiral critical point: (1) aefbguark masses or (2) along the
critical surface.

7.1 Fixed mass, fixed temperature: “effective radius of corergence”

The determination of the Taylor expansion of the pressune (41), provides in principle
a simple way to estimate the location of the QCD critical poihe Taylor expansion will stop
converging. The pole afye, Te) in the second derivativel?P/du? = xq of the pressure will
govern the divergence of the coefficients. In fact, therenistizer pole at—pg, Te), so that
d?P/du?(u, T =Te) O1/(ue — 1) +1/(ue + 1) O (u2 — p?)~L. 1t follows that

Czn(T)

at T =T, 7.1
Cont2(T) . 7.

Thus, some indication about the QCD critical point can pesHae obtained for free from the first
few Taylor coefficients. Indeed, this approach has beenvi@t by Karsch and collaborators [15]
and by Gavai and Gupta [17]. The latter group has made sttatensents, like “We find the radius
of convergence of the series at various temperatures, amtdkthe location of the QCD critical

point to beTg /T, ~ 0.94 andug /Tg < 0.6” (abstract Ref. [17]). Such strong statements force me
to balance them with strong words of caution.

The first and obvious point is that eq. (7.1) concerngithe o limit of the Taylor coefficients.
From a small number of low-order coefficients, the ratiog tiree can form are neither a lower
nor an upper bound of any sort on the radius of convergencdactn[17] considers the Taylor
expansion ofyq rather than that of the pressure itself. This leads to arvaelgnit expression for the
radius of convergence

Xq 1 d2pP s u 2n-2
T = Toge — 2,201 enT) <T> (7.2)
2n(2n—1)cn(T) ‘
\/‘ 2n+2)(2n+ 1)Cons2(T) E (7.:3)

11
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But for n = 1, the “effective radius of convergence” differs from thatained from eq. (7.1) by a
factorv/6. Thus, the coincidence of estimates from successive swailats ofn depends in part on
the choice of observable to expand. Moreover, the QCD atifioint is in the universality class of
the 3d Ising model, with known, non-trivial critical exparig, and the susceptibilityq does not
simply diverge like(uZ — pu?)~1, leading to a modification of eq. (7.3) for finite

Another difficulty is that the Taylor coefficients vary withe temperature, and so does the ra-
dius of convergence of the expansion. At high temperatuedkvow from Roberge and Weiss [27]
that there is a first-order transition lineatT = i7r/3. This singularity at negative? is consistent
with the measured Taylor coefficients, which alternate gm sit high temperature starting frarp
At low temperature, a first-order transition occurs at ygalvhich should cause high-order Taylor
coefficients to all be positive. This remains trueTagicreases, until the critical endpoint of the
first-order line is reached a = Tz. WhenT rises abovdg, the real singularity due to the critical
point branches into a pair of conjugate poles in the complgtane, as shown by Stephanov in
[28]. These complex poles move towards the imaginamgxis asT increases, and approach the
origin closer than the QCD critical point [28]. Thereforbetdetermination oz should not be
based on the minimization of the radius of convergence, buhe sign behaviour of the Taylor
coefficients. The two groups use different prescriptionarg¢h et al. determin& as the highest
temperature at which all measured Taylor coefficients asitipe, as appropriate for a singularity
at realu. Gavai and Gupta choose fog the lowesttemperaturel < T for which all measured
Taylor coefficients are positive (see Fig. 11 of [17]).

Finally, the strongest reason for skepticism, in my opinmmes from the original reweight-
ing study of Fodor and Katz [7]. The observable they focusedtwe imaginary part of the Lee-
Yang zero closest to the real axis, extrapolated to the théymamic limit, is closely related to the
inverse of the maximum value of the specific heat. In the spatgion where reweighting can
be trusted, the specific heat shows complete insensitiwify. tit would take a high-order Taylor
expansion abouti = 0 of the curve Fig. 4ight to capture the zero signaling the QCD critical
point. Note, as further confirmation of this lack of sendito a putative critical point, that all
susceptibilities measured in the determination of the ggeuitical lineT(u) [19] reported Sec. 6
appear to slightlydecreaseasyu is turned on.

7.2 The curvature of the critical surface

Considering the difficulties and ambiguities of determinihe convergence radius of the Tay-
lor expansion, it is worth pursuing a complementary, broadategy: the determination of the
chiral critical surface Fig. 1€éight, following the second arrow. | have been pursuing this apgino
for several years with Owe Philipsen [29, 30, 31, 32, 33]. \&lenow reached conclusive results
on coarseé\; = 4 lattices, using standard staggered fermions and setidg aossible issues with
taking fractional powers of the fermion determinant.

The first step was the determination of the= O critical line in the(myg,ms) quark mass
plane, shown Fig. 11eft No surprises were encountered there. We confirmed thathysiqal
point lies in the region where a finite-temperature crosstakes place, not a phase transition.
And our results were consistent with the tricritical scglimplied by a tricritical point atm, 4 = 0,
ms ~ 500 MeV (solid blue curve in Fig. 1left).
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Figure 11: Left Chiral critical line aty = 0 in the (my4,ms) quark mass plane [31]. Compare with
expectations Fig. 1ft. The two red arrows mark the points at which the curvaturéefdritical surface
was measuredCenter Leading effect of a negative curvature. Note the curvatiirdhe deconfinement
critical surface for heavy quarks [34Right Possible back-bending due to higher-order terms [35].

The next step has been to measure the variation of the trificak masses with chemical
potential, expressed in Taylor series form as

Me(K) _ Mo\
o) Lt Y (&) (7.4)

This endeavour has been pursued at the two mass points mayked arrows Fig. 1left, cor-
responding to three degenerate flavors and to a strange witarkhysical mass, respectively. In
the Ny = 3 case, we have compared the effect of an infinitesimal inaagipg, which yields the
Taylor coefficienty directly, and that of several finite imagingmys with results fitted by a poly-
nomial, finding good consistency. We have also compared patia volumes, 8and 12, finding
excellent agreement. Our final result [32] is

% ~1-33(3) (%)2—47(20) (%)4— (7.5)

Since we identify the critical mags. as that which gives the Binder cumuldBy = % of
the quark condensatpy its critical Ising value 1.604.., our observable is buitirfr 4" derivatives
of the pressure. Extracting as above then requires the measurement'af@ivatives of the pres-
sure. As indicated Sec. 4, this is the current state of théfambbtain such results, we accumulated
about 25 million RHMC trajectories, and started to use th&E®Gomputing Grid [36].

In theN¢ = 2+ 1 non-degenerate case with physical strange quark massaove tunemy 4
to values smaller than in nature in order to turn the finitagierature crossover into a second-
order phase transition. This forced us to use a larget, d@lume and use the computing Grid
extensively. Our final result [33], based on about 1.5 milliajectories, is

me (w) H 2
0 1-39(8) (ﬁ) — . (7.6)

Thus, in both cases we find that the region of quark massesevéhéirst-order transition takes
placeshrinksasy is turned on, just like in the case of heavy quarks where the mioblem is mild
and the critical surface can be determined by brute forceiggwing [34, 37]. The chiral critical
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Figure 12: Left estimate of the region of first-order transition in the duarass plane, in physical units,
from improved (stout-smeared) actionsdn= 4 and 6 lattices [42]Right current status of the measure-
ment of the curvature of the critical surfacen= 6 lattices. TheZ((u/T)?) Taylor coefficient is obtained
from the intercept, and thé((u/T)*) coefficient from the slope of the fit. A negative curvatureaigdred
as forN; = 4, but the results are not conclusive yet.

surface then bends as shown Fig.cehter As indicated in the figure, this rules out, dh= 4
lattices, the presence of a chiral critical point, at leasif/ T <& (1) where one would expect the
truncation error of the Taylor expansion to be small.

This conclusion must be accompanied by important cautjoremarks. First, one may be
worried about the convergence of the Taylor expansion. adlyefor u/T = 1, the last terms of
egs. (7.5) and (7.6) are dominant. Even though the sign ohéteorder contribution has been
estimated and reinforces the shrinking of the first-ordgrorg it is clear that higher-order terms
may quickly produce a “back-bending” of the critical sudaas in Fig. 1Tight. Indeed, this must
happen if one wishes to reconcile our result with that of Fadw Katz [7], whose critical point
Fig. 4 lies atu /T ~ 0.7 for mass parameters similar to eq. (7.6). Similarly, there inconsistency
between our conclusion and that of Ejiri [38], who finds aicait point aty/T ~ 2.4. Such a
back-bending can also be explained by model calculatiaonghdN¢ = 2 case, it is known that a
restoration of th&) (1) symmetry favors a first-order transition [39, 40]. Simiyefidr Nt =2+1, a
back-bending surface can be produced in an NJL-type mogekding a 't HooftU (1)a-breaking
term (detqi(1— y5)q; + h.c.), with a u-dependent strength [35] A similar pattern can even be
obtained in a linear sigma model including thermal flucturadi[41].

The second issue is the systematic error caused by the @hese lattice spacingy; = 4
impliesa ~ 0.3 fm. Even aty = 0 and onN; = 8 lattices, discretization errors are presumably
the cause of the&’(15%) discrepancy between estimatesTphby Karsch et al. [43] and by Fodor
et al. [44]. Here, the critical surface which we study is #@resto deviations from the Stefan-
Boltzmann law at high temperature, and even more so to tHatido of taste symmetry which
strongly affects the thermodynamics of the 16 “pions”. khgld come as no surprise — a posteriori
—that the critical line in the quark mass plane, using platsicordinates liken;/T;, seems to move

2Interestingly, back-bending does not necessarily producgtical point. The critical temperature is determined
implicitly as one moves on the critical surface, and may ease to zero, thus terminating the critical surface, befwe
quark masses have reached their physical values [35].
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by £©/(100% asN; increases from 4 t®. Early indications came from improving the discretization
of the Dirac operator at fixeldy = 4: the critical pion mass seemed to decrease by a factojd5].
More recently, an even more dramatic shrinking of the firgieoregion has been reported in [42],
estimating from stout-smeardd = 4 and 6 simulations that the first-order region is limited to
guark masses about 10 times smaller than physical (see Flgftl A less dramatic, but similar
effect has been seen in [4] when companng/T. for the 3-flavor theory on lattices with; = 4
(my/Te = 1.6804)) and 6 (M;/Tc = 0.954(12)) time-slices. Clearly, finer lattices tend to make
the finite-temperature transition smoother. This can ihli@cseen in an NJL model by truncating
the sum over Matsubara frequencies to the fikstalues [46]. This effect by itself makes it more
difficult to imagine a critical point at small: the physical point lies further from the critical line,
and the critical surface would have to bend very stronglyatals larger quark masses.

Moreover, one may hope, because the chemical potentialrdiedfect the UV physics, that
while the critical surface will move significantly towardset originm, g = ms= 0 asa — O, its
curvaturewill vary less. This pious wish needs to be confirmed by nuoa¢isimulations, which
have proved to be challenging. Using the same method as; fer4, we have been simulating an
18° x 6 lattice, with 3 degenerate quark flavors at the- O critical mass. After over two years of
simulation and a half-million units of Molecular Dynamidmg, the current results Fig. Iiyht
are still too noisy to conclude. The curvature of the critisarface is obtained from the = 0
intercept of the data: a negative value is favored, ad\fce 4, but the errors are large and the
(correlated) data do not exclude a positive value. Moreavéinear fit, including & /T)* term,
is preferred over a constant fit. The sign of the/T)* coefficient then reinforces the shrinking of
the first-order region as in eq. (7.5). However, its magmt@ahich is very poorly determined at
the moment) could make this term dominant over the leading )? term as soon ag/T >0.15.

If this turns out to be the case, then our truncated Tayloaesjon can only be trusted up to such
values. Going to largep would require determining higher-order Taylor coefficgrda daunting
task.

8. Left out

| have not covered several recent developments in the noahetudy of finite-density QCD.
e The numerical study of the canonical ensemble, with a fixadlmar of baryons, has been ex-
tended from staggered fermions [47, 48, 38] to Wilson fermajowith several technical refine-
ments [49, 50, 51]. This is computationally challengingicsi the fermion determinant must be
computed exactly, at a cost proportional to the cube of thieixrgize, so that the work is increased
64-fold on a given lattice size. On & & 4 lattice, the phase diagram appears to be qualitatively
different forNs = 2,3 and 4 flavors, suggesting a possible critical pointNer= 3. These results
are presented by Anyi Li in a plenary talk [52].
e Instead of aiming at a finite density of baryons, one may sflidy 0 few-body physics: by
measuring the interactions between two or three baryores,can constrain the couplings of an
effective theory describing nuclear matter. This is a vempartant and active research direction,
reviewed last year [53], with two large-scale efforts unegbgr [54, 55]. The sign problem appears
in the form of a signal-to-noise ratio for baryon correlatalegrading exponentially fast in Eu-
clidean time [56]. But since one works &t= 0, a toolbox of variational trial states can be used
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to try and isolate the groundstate before the signal diey &7d. The state of the art is reviewed
by Will Detmold in a plenary talk [58]. Spectacular results/b already been obtained for multi-
meson states, corresponding to an isospin chemical pait&si].

¢ Other interesting developments concern non-QCD thearigs 2-color “QCD” [60] where a va-
riety of regimes may appear at low temperature, as the clamatential is increased, 9t + 1)d
Gross-Neveu and NJL models whose phase diagram can be detdramalytically [61, 62], in-
cluding inhomogeneous, crystalline phases. These featoag well be present in QCD also.

e An important approach to tackling the sign problem is then&iy of states” approach, where the
partition function is expressed as a one-dimensional iatég—= [ dx p(x), and the computer effort
can be concentrated on valuesxafherep(x) is more noisy [63]. A large-scale effort, taking for
the gluon action, gave hints of a triple point in the T) plane [64]. More recently, this approach
has been espoused, in part, by Ejiri in [38].

e Several contributions to this Conference did not fit in thiegaries above, and | omitted them
from this subjective review, with apologies.

9. Prospects

| have painted a rather bleak landscape, where systematis are very large and one should
only expect slow progress, helped with massive amountsrmpater time. Is there nothing more
exciting in sight? Yes, definitely. Let me emphasize twodimns where | consider enthusiasm to
be justified. Amusingly, they both represent a revival of¢epvhich were “hot” twenty years ago.

9.1 Worldline formalism and strong coupling limit

As we have seen Sec. 2, as soon as one integrates out therfgrroite must encounter a
sign problem with the resulting determinant at finite dgnstthis suggests changing the order of
integration, and performing at least a partial integratiwar the gauge fields first [65]. Integrating
out the gauge links seems hopeless, since the plaquetténtgnmaction introduces a complicated
4-link interaction. Still, this may be simpler than dealinith the sign problem. To start with,
one can consider the strong-coupling lifiikuge= 0, where the plaquette term in the action drops
out. Then, the link integration factorizes into a producldink integrals, which can be performed
analytically. Only color singlets survive, made of quarkdg& The Grassmann integration pro-
duces only a handful of terms, which represent the hoppingplair singlets from site to site. In
other words, the partition function has been reexpresseal asn over configurations ddops
representing the worldlines of hadronic color singlets.

At this stage, this reformulation is relatively simple,@nt only involves discrete variables,
and physically appealing. But it is not clear that simulasiavill be any easier: The fixed number
of underlying Grassmann variables at each site generatessdraint on the loop configuration
(the number ofgg mesons connected to each site is fixed), which makes locatéM@arlo up-
dates hopelessly inefficient. And a severe sign problenovi@lfrom the fermionic nature of the
baryons (for an odd number of colors): baryon loops are tatgrand their weight flips sign with
their orientation. Fortunately, this sign problem can blwesb by partial resummation at = 0,
and then remains very mild at# 0 [66]. And a recent Monte Carlo algorithm, the “worm” algo-
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rithm [67], is particularly efficient at updating globallysh discrete systems with constraints [68].
This efficiency does not even degrade in the chiral limit.

All this was understood and tried around 1990 [66, 69], anahdbned before the discov-
ery of the worm algorithm. This crucial algorithmic progsdsas enabled a complete numerical
determination of théu, T) phase diagram for the strong coupling limit of QCD with stxggl
fermions [70], superseding ancient [71] and recent [72)\dical approximations, and even a pre-
cise study of nuclear interactions and of “nuclear matterthis lattice model, all with “tabletop”
computer resources.

| am insisting on one particular project because of my peaisimvolvement. But the same
worldline approach can be applied to other lattice fermimuets [73, 74], and to bosonic models
normally afflicted by a sign problem, after transforming tmtlvariables [75]. It may even be useful
to “fermionize” a bosonic system, treating the bosons amifam composites. Recall that this yields
a simple derivation of Onsager’s solution to the IBing model [76]. This “new computational
approach” was reviewed by its main proponent at last yeafsrence [77].

Can all lattice models, in particular QCD at weak coupling, formulated and efficiently
simulated as a gas of loops? One technical ingredient faressds the worm algorithm. Its limits
of applicability are not clear yet. It appears to work well & least one model, thedZZPY~1 spin
model [78], where cluster algorithms are known to fail. ¥ tiandom worms can be generalized to
random surfaces, then one could apply the same treatmdre tang-Mills part of the action and
simulate QCD at weak coupling, as a gas of quark loops forrtiagboundary of gauge surfaces.
Unfortunately, this step requires a duality transformatiohich for a non-Abelian theory gives
negative weights and/or non-local couplings [79, 80].

A somewhat less ambitious strategy consists of designingiém-based, sign-problem free
actions, with symmetries which ensure a desired effectivednergy limit. Such actions can be
efficiently simulated, even in the massless limit, to adslfg®cise questions about the effective
low energy theory. A variety of models with chiral symmet@gndbe realized [81]. What is still
missing is a non-Abelian gauge symmetry.

9.2 Complex Langevin

The idea of stochastic quantization is to introduce a Laimgevolution for a fieldg in a

fictitious timet, obeying

dp _ 3S[¢|

oY _ A

FE 50 +n (9.1)
wheren is a Brownian noise. When the acti®fg]| is real, one can prove the existence of an as-
sociated Fokker-Planck equation and its convergence tiixe:point distribution’ exp(—S[¢)),

so that all observables satisfy

Wigl): = [ 70exo-Slg)Wig ©2)

where(..); is an average over the fictitious Langevin time

What happens whe8[¢] is complex? The drift force%ﬁ’] becomes complex, so that each
component of the fielg will become complex under the evolution eq. (9.1). One cam tom-
plexify @ into (R +i¢'), evolve with the complexified version of eq. (9.1), and manihe time-
average(W [(pR+ i(p']>r. There still is an associated Fokker-Planck equation, loaibst nothing

17



Finite mu Philippe de Forcrand

is known about stationary solutions. Nevertheless, it thatt\W [@R +i¢']); has the desired
vaIue%f@rpexp(—S[(p])W [@] — sometimes. Some other times, (& +i¢') distribution in the
complex plane does not converge to-atationary distribution, becaug@® +i¢') runs to infinity.
And some other times, convergence is achieved to a distibgiving wrong expectation values
(W [@R+i¢']);. An understanding of sufficient conditions (besides takimgal action) to avoid
runaways and convergence to the wrong answer was not reachled 1980s [82, 83, 84, 85].
Activity on this topic died away.

It was noticed only recently that a drastic reduction in tisxibte stepsize of the complex
Langevin evolution sufficed to almost eliminate runawaysithVén adaptive stepsize [86] the
runaways disappeared completely. This opened a new playdrashere to study convergence.
Surprisingly, correct answers have been obtained in masgscaoy models with one gauge link
matrix; 4d complex¢* theory with a chemical potential, whefe~ 0 Bose-Einstein condensation
is reproduced folu > L [87], as well as the lack ofi-induced effect folu < L (known as the
“Silver Blaze problem” [88]); and even QCD with chemical gotial, in the heavy-dense limit,
where results are consistent with those of reweighting.[88se extraordinary successes should
be balanced against a short list of failures: the ngisa eq. (9.1), which a priori only needs to
satisfy (n(1)|n(1')) = 286(1 — 1) and can be complex, must in fact be kept real for convergence;
and real-time quantum evolution still seems to be out ofig80]. Clearly, the approach looks
promising and its limits must be further explored and unidec.

To get the flavor of the magic at work here, let us consider imple example of Sec. 3.1:
Z(A) = [T dxexp(—x? +iAx). WhenA = 0, the real Langevin evolution x/dt = —2x+ 1.
WhenA # 0, the drift force becomes complex and one needs to complxiito (x+iy). The
corresponding Langevin evolution becomes

%(x+iy) = —2(x+iy)+iA +n (9.3)

In this simple case, this equation can be solved analyyic8ihceZ(A) is a Gaussian integral, the
stationary distribution ofx,y) is a nice Gaussian shown Fig. 13, centered at the complexesadd
point (x =0,y =iA/2). Itis perhaps not intuitive how expectation valug¥(x)) are recovered:
one must analytically continu&/(x) to W(x+iy) to obtain(W(x+1y)); = (W(X))z. The original,
negative contributions of some values>oére then reconstructed when one integratég + iy)
overy. Note that they-width of the Gaussian depends on the variance of the imagpart of

the Langevin noise: for a real noise, thavidth shrinks to zero. But, in this case at least, correct
answers are obtained for any complex Langevin noise satisfy) (7)|n(1')) = 25(1 — T').

This toy example suggests that an analysis of the saddléspaiithe classical action can be
fruitful. This is the starting point of a loop-like expansi@onsidered in [91], which may shed
light on the convergence properties of complex Langevire [angevin noise distorts the classical
Gaussian distribution around the saddle points, hopeifulyweak manner. Indeed, one may guess
that systems with one complex saddle point can perhaps bly stifidied by complex Langevin,
while competition between saddle points (as at a first-ondarsition) may present a challenge.
The “safe” category might include the effect ofSavacuum angle, as studied in a saddle-point
formulation in [92]. Gauge theories are more likely to belie tunsafe” category, due to flat
directions in the action, which correspond to gauge transitions and extend to complex infinity
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Oscillatory weight(x)

Positive weight(x,y) ———

Figure 13: Complex Langevin for 1 degree of freedom- (x+1iy): the oscillatoryx-distribution of Fig. 2,
shown in red and green, becomes a smooth positive Gausstha (R y) plane, centered at the complex
saddle pointA /2. All moments of the original, oscillatong-distribution are equal to moments Ef+ iy)
with respect to the Gaussian, positivey) distribution.

because gauge links are complexified fr&d(N) to SL(N,C). Progress is being made towards
understanding necessary conditions for convergence [RiBRlly, | note the intriguing, perhaps
fruitful analogy between complex Langevin aRd-symmetric quantum mechanics [94] and its
cousin, complexified classical mechanics [95].

10. Conclusions

Determining the phase diagram of QCD as a function of tentperand chemical potential is
an important fundamental goal. Even if clear answers aravaitable yet, and if the progress in
our knowledge is likely to be slow, it is definitely worth puisg the present efforts. Finite-density
lattice QCD is not just a temporarily fashionable topicustifies a sustained research programme.

Three numerical approaches give reliable, consistenttsegrovided the chemical potential
is small enough: reweighting, Taylor expansion and ar@abydntinuation from imaginary. This
allows crosschecks in the region where the reliability @fsth methods becomes doubtful. Con-
fidence in finite-density simulations can be establishedthab comparison between QCD and
models can become reliable and fruitful. For instance, tek-@stablished phase diagram of QCD
at imaginaryu is already a useful testing ground for effective models.

Similarly, the curvature of the pseudo-critical temperafly(u) at 4 = 0 is almost under nu-
merical control, and provides useful phenomenologicalrimiation. The situation is more delicate
regarding the existence and location of a QCD critical pairitich requires venturing to non-zero
u. Nevertheless, analytic knowledge about the severity efsign problem can give us, before
we start the computation, reliable information about theT ) region which can be explored and
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the baryon density which can be reached. And it now seemsttiatthe coarseness of the usual
N; = 4 or 6 lattices is the major source of systematic error. Tivith, necessary massive increases
in computer resources, we can expect slow but steady pogresrds the final, continuum limit
answer.

This review suggests two possibilities for breakthrougirsat least for rapid development:
reversing the order of integration and integrating overghege links first; and dealing with the
sign problem using complex Langevin. Whatever the final saafthese two strategies, one can
already predict that they will contribute to increasing koowledge of finite-density QCD at least
in some limiting regimes of parameters.

| would like to end by citing Confucius, who knew all about timportance of scholarly
research: “Real knowledge is to know the extent of one’srignce”.

Acknowledgements

| am very grateful to numerous colleagues for discussiomkspatient explanations, among
them G. Aarts, A. Alexandru, M. Alford, B. Bringoltz, M. D', W. Detmold, S. Ejiri, Z. Fodor,
M. Fromm, K. Fukushima, C. Gattringer, R. Gavai, M. GoltermaS. Gupta, S. Hands, A. Hasen-
fratz, S. Kim, A. Kurkela, K.-F. Liu, A. Ohnishi, M. Panero, @hilipsen, C. Schmidt, S. Sharpe,
K. Splittorff.

References

[1] J. C. Osborn, K. Splittorff and J. J. M. Verbaarschot, &r808.1982 [hep-lat].

[2] P. de Forcrand, S. Kim and T. Takaishi, Nucl. Phys. Prap. 119(2003) 541
[arXiv:hep-1at/0209126].

[3] S.D.H. HsuandD. Reeb, Int. J. Mod. Phys2B(2010) 53.
[4] P.de Forcrand, S. Kim and O. Philipsen, Ro&2007 (2007) 178 [arXiv:0711.0262 [hep-lat]].
[5] K. Splittorff and J. J. M. Verbaarschot, Phys. Rev7D(2008) 014514 [arXiv:0709.2218 [hep-lat]].

[6] I. Barbour, N. E. Behilil, E. Dagotto, F. Karsch, A. Morgld. Stone and H. W. Wyld, Nucl. Phys. B
275(1986) 296.

[7] Z. Fodor and S. D. Katz, JHE®404(2004) 050 [arXiv:hep-lat/0402006].
[8] K. Splittorff, arXiv:hep-lat/0505001.

[9] F. Csikor, G. I. Egri, Z. Fodor, S. D. Katz, K. K. Szabo andIAToth, JHEP0405(2004) 046
[arXiv:hep-1at/0401016].

[10] J. Han and M. A. Stephanov, Phys. Rev78(2008) 054507 [arXiv:0805.1939 [hep-lat]].

[11] P. de Forcrand, M. A. Stephanov and U. Wenger, BAB2007 (2007) 237 [arXiv:0711.0023
[hep-lat]].

[12] J. C. R. Bloch and T. Wettig, JHEF903(2009) 100 [arXiv:0812.0324 [hep-lat]].

[13] M. P. Lombardo, K. Splittorff and J. J. M. Verbaarscheliys. Rev. (80 (2009) 054509
[arXiv:0904.2122 [hep-lat]].

20



Finite mu Philippe de Forcrand

[14] M. D’Elia and F. Sanfilippo, Phys. Rev. 80 (2009) 014502 [arXiv:0904.1400 [hep-lat]].
[15] C. R. Alltonet al,, Phys. Rev. D1 (2005) 054508 [arXiv:hep-lat/0501030].

[16] C. Schmidt, private communication.

[17] R. V. Gavai and S. Gupta, Phys. Rev7B(2008) 114503 [arXiv:0806.2233 [hep-lat]].
[18] T. Takaishi, P. de Forcrand and A. Nakamura, arXiv:10820 [hep-lat].

[19] G. Endrodi, these proceedings, PoST2009 (2010) 167; G. Endrodi, Z. Fodor, S. D. Katz and
K. K. Szabo, PoSATTICE2008 (2008) 205 [arXiv:0901.3018 [hep-lat]].

[20] See, e.g., Table I'in O. Philipsen, Prog. Theor. PhyppE74(2008) 206 [arXiv:0808.0672
[hep-ph]].

[21] J. Cleymans, H. Oeschler, K. Redlich and S. Wheatorhys RG32 (2006) S165
[arXiv:hep-ph/0607164].

[22] A. Andronicet al., Nucl. Phys. A837(2010) 65 [arXiv:0911.4806 [hep-ph]].
[23] J. Rafelski and J. Letessier, Nucl. Phys725(2003) 98 [arXiv:nucl-th/0209084].
[24] S. Kratochvila and P. de Forcrand, PloST2005 (2006) 167 [arXiv:hep-lat/0509143].

[25] P. Cea, L. Cosmai, M. D’Elia, C. Manneschi and A. Papg,?Rev. D80 (2009) 034501
[arXiv:0905.1292 [hep-lat]].

[26] Z. Fodor and S. D. Katz, Phys. Lett.984(2002) 87 [arXiv:hep-lat/0104001].

[27] A. Roberge and N. Weiss, Nucl. Phys2B5(1986) 734.

[28] M. A. Stephanov, Phys. Rev. I8 (2006) 094508 [arXiv:hep-lat/0603014].

[29] P. de Forcrand and O. Philipsen, Nucl. Phy&642(2002) 290 [arXiv:hep-lat/0205016].

[30] P. de Forcrand and O. Philipsen, Nucl. Phy&#(2003) 170 [arXiv:hep-lat/0307020].

[31] P. de Forcrand and O. Philipsen, JHEF01(2007) 077 [arXiv:hep-lat/0607017].

[32] P. de Forcrand and O. Philipsen, JHEPL1(2008) 012 [arXiv:0808.1096 [hep-lat]].

[33] J. T. Moscicki, M. Wos, M. Lamanna, P. de Forcrand and lipsen, arXiv:0911.5682 [Unknown].

[34] S. Kim, Ph. de Forcrand, S. Kratochvila and T. TakaiBleSLAT2005 (2006) 166
[arXiv:hep-1at/0510069].

[35] J. W. Chen, K. Fukushima, H. Kohyama, K. Ohnishi and Uh&&Phys. Rev. B0 (2009) 054012
[arXiv:0901.2407 [hep-ph]].

[36] P. de Forcrand and O. Philipsen, PoSTTICE2008 (2008) 208 [arXiv:0811.3858 [hep-lat]].
[37] J. Langelage and O. Philipsen, arXiv:0911.2577 [regp-I|

[38] S. Ejiri, Phys. Rev. Ir8(2008) 074507 [arXiv:0804.3227 [hep-lat]]; P@BTTICE2008 (2008) 002
[arXiv:0812.1534 [hep-lat]].

[39] R. D. Pisarski and F. Wilczek, Phys. Rev2D (1984) 338.
[40] S. Chandrasekharanand A. C. Mehta, Phys. Rev. 28{2007) 142004 [arXiv:0705.0617 [hep-lat]].
[41] E. S. Bowman and J. |. Kapusta, Phys. Rev9%2009) 015202 [arXiv:0810.0042 [nucl-th]].

21



Finite mu Philippe de Forcrand

[42] G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, R®g2007 (2007) 182 [arXiv:0710.0998
[hep-lat]].

[43] A.Bazavovet al, Phys. Rev. 80 (2009) 014504 [arXiv:0903.4379 [hep-lat]].

[44] Y. Aoki, Z. Fodor, S. D. Katz and K. K. Szabo, Phys. Lett6B3(2006) 46 [arXiv:hep-lat/0609068];
Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Kriegdd. K. Szabo, JHEP906(2009) 088
[arXiv:0903.4155 [hep-lat]].

[45] F. Karsch, C. R. Allton, S. Ejiri, S. J. Hands, O. KaczelgrE. Laermann and C. Schmidt, Nucl.
Phys. Proc. Suppl29(2004) 614 [arXiv:hep-lat/0309116].

[46] J. W. Chen, K. Fukushima, H. Kohyama, K. Ohnishi and Uh&aarXiv:0912.2099 [hep-ph].

[47] A.Hasenfratz and D. Toussaint, Nucl. Phys3BL 539 (1992).

[48] P. de Forcrand and S. Kratochvila, Nucl. Phys. ProcpBupb3 62 (2006) [arXiv:hep-lat/0602024].
[49] A. Alexandru, A. Liand K. F. Liu, PO$AT2007 (2007) 167 [arXiv:0711.2678 [hep-lat]].

[50] X.f.Meng, A. Li, A. Alexandru and K. F. Liu, POBATTICE2008 (2008) 032 [arXiv:0811.2112
[hep-lat]].

[51] J. Danzer and C. Gattringer, Phys. Rev7&(2008) 114506 [arXiv:0809.2736 [hep-lat]].
[52] A.Li, arXiv:1002.4459 [hep-lat].

[53] S. R. Beane, POBATTICE2008 (2008) 008 [arXiv:0812.1236 [hep-lat]].

[54] S. Aoki, T. Hatsuda and N. Ishii, arXiv:0909.5585 [higp}.

[55] S. R. Beanet al.[NPLQCD Collaboration], arXiv:0912.4243 [hep-lat].

[56] G. P. Lepage, “The analysis of algorithms for latticeiga theory”, Invited lectures given at TASI'89
summer school, Boulder, CO, June 4-30, 1989. Published ind&@o ASI 1989:97-120
(QCD161:T45:1989).

[57] S. R. Beanetal, Phys. Rev. 80 (2009) 074501 [arXiv:0905.0466 [hep-lat]].
[58] W. Detmold, PoS.AT2009 (2010) 008.

[59] S.R.Beane, W. Detmold, T. C. Luu, K. Orginos, M. J. Savagd A. Torok, Phys. Rev. Lett00
(2008) 082004 [arXiv:0710.1827 [hep-lat]].

[60] S.Hands, S. Kim and J. I. Skullerud, arXiv:1001.1682dHat].
[61] G.Basar and G. V. Dunne, Phys. Rev7B(2008) 065022 [arXiv:0806.2659 [hep-th]].
[62] G.Basar, G. V. Dunne and M. Thies, Phys. Rew®$2009) 105012 [arXiv:0903.1868 [hep-th]].

[63] G.Bhanot, K. Bitar and R. Salvador, Phys. Lett188(1987) 246; A. Gocksch, Phys. Rev. Lail
(1988) 2054.

[64] Z. Fodor, S. D. Katz and C. Schmidt, JHBP03(2007) 121 [arXiv:hep-lat/0701022].

[65] B. Bringoltz, arXiv:1004.0030 [hep-lat].

[66] F. Karsch and K. H. Mutter, Nucl. Phys. 8.3(1989) 541.

[67] N. Prokof’ev and B. Svistunov, Phys. Rev. L& (2001) 160601.

[68] D.H. Adams and S. Chandrasekharan, Nucl. Phy@6B(2003) 220 [arXiv:hep-1at/0303003].
[69] G.Boyd, J. Fingberg, F. Karsch, L. Karkkainen and B.eP&ton, Nucl. Phys. B76(1992) 199.

22



Finite mu Philippe de Forcrand

[70] P.de Forcrand and M. Fromm, Phys. Rev. L&@t4 (2010) 112005 [arXiv:0907.1915 [hep-lat]];
M. Fromm and P. de Forcrand, P&&T2009 (2010) 193, arXiv:0912.2524 [hep-lat].

[71] P. H. Damgaard, D. Hochberg and N. Kawamoto, Phys. Be1t58(1985) 239; P. H. Damgaard,
N. Kawamoto and K. Shigemoto, Nucl. Phys2B4(1986) 1.

[72] K. Miura, T. Z. Nakano and A. Ohnishi, Prog. Theor. Phi/22(2009) 1045 [arXiv:0806.3357
[nucl-th]].

[73] C. Gattringer, V. Hermann and M. Limmer, Phys. RewZ®(2007) 014503 [arXiv:0704.2277
[hep-lat]].

[74] U. Wenger, Po$AT2009 (2010) 022, arXiv:0911.4099 [hep-lat]; Phys. Rev8D®(2009) 071503
[arXiv:0812.3565 [hep-lat]].

[75] D. Banerjee and S. Chandrasekharan, arXiv:1001.36&8-[at].

[76] S. Samuel, J. Math. Phy21 (1980) 2806.

[77] S. Chandrasekharan, PeATTICE2008 (2008) 003 [arXiv:0810.2419 [hep-lat]].
[78] U. Wolff, Nucl. Phys. B832(2010) 520 [arXiv:1001.2231 [hep-lat]].

[79] A. Ukawa, P. Windey and A. H. Guth, Phys. Rev2D(1980) 1013.

[80] J. W. Cherrington, D. Christensen and I. Khavkine, PiRev. D76 (2007) 094503 [arXiv:0705.2629
[hep-lat]]; J. W. Cherrington, arXiv:0910.1890 [hep-lat]

[81] D. J. Cecile and S. Chandrasekharan, Phys. R& (2008) 014506 [arXiv:0708.0558 [hep-lat]];
Phys. Rev. D77 (2008) 091501 [arXiv:0801.3823 [hep-lat]].

[82] G. Parisi, Phys. Lett. B31(1983) 393.

[83] J. R. Klauder, J. Phys. A6(1983) L317.

[84] F. Karsch and H. W. WylId, Phys. Rev. LeBb (1985) 2242.
[85] J. Ambjorn and S. K. Yang, Phys. Lett. B55(1985) 140.

[86] G. Aarts, F. A. James, E. Seiler and I. O. Stamatescus Ristt. B687(2010) 154 [arXiv:0912.0617
[hep-lat]].

[87] G. Aarts, Phys. Rev. Letl.02(2009) 131601 [arXiv:0810.2089 [hep-lat]].
[88] T.D. .. Cohen, Phys. Rev. Le@1(2003) 222001 [arXiv:hep-ph/0307089].
[89] G. Aarts and I. O. Stamatescu, JHB®09(2008) 018 [arXiv:0807.1597 [hep-lat]].

[90] J. Berges, S. Borsanyi, D. Sexty and |. O. Stamatescys.FRev. D75 (2007) 045007
[arXiv:hep-1at/0609058].

[91] G. Guralnik and C. Pehlevan, Nucl. Phys8B2(2009) 349 [arXiv:0902.1503 [hep-lat]].

[92] V. Azcaoiti, G. Di Carlo, A. Galante and V. Laliena, PhyRev. Lett.89(2002) 141601
[arXiv:hep-1at/0203017].

[93] G. Aarts, E. Seiler and I. O. Stamatescu, Phys. Re®1[2010) 054508 [arXiv:0912.3360 [hep-lat]].
[94] C. M. Bender, Contemp. Phy46 (2005) 277 [arXiv:quant-ph/0501052].
[95] C. M. Bender, D. D. Holm and D. W. Hook, J. Phys4A(2007) F793 [arXiv:0705.3893 [hep-th]].

23



