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1. Introduction

Simulating strongly interacting fermions continues to be amajor challenge in computational
physics. The standard procedure to deal with fermionic degrees of freedom is to integrate out the
fermionic fields in order to obtain the fermion determinant detD, whereD denotes the Dirac op-
erator. However, this procedure is not unproblematic. Consider for example a fermion interacting
with a bosonic fieldU . After integrating out the fermion fields one obtains detD(U) which yields
an effective action non-local in the bosonic field. The standard method is now to re-express the de-
terminant using bosonic ’pseudo-fermions’ and use the Hybrid Monte Carlo algorithm [1] which in
essence encodes the non-locality of the fermion determinant in the inverseD(U)−1. Another prob-
lem is that the standard approach suffers from critical slowing down (CSD) towards the chiral limit.
In that limit the correlation length of the fermionic two-point function diverges. As a consequence
the Dirac operatorD(U) develops very small modes and eventually the inverseD(U)−1 becomes
ill-conditioned. Yet another problem concerns the phase ofdetD which for Wilson fermions is in
general non-zero. Hence a probabilistic interpretation ofthe integration measure, necessary for any
Monte Carlo simulation, is not possible and leads to a sign problem when an odd number of Wilson
fermion flavours is simulated.

Here we propose a novel approach [2] circumventing the abovementioned problems. It is
based on the exact hopping expansion of the fermion action, i.e. a reformulation of the fermion
system as a statistical closed loop model. We develop a simulation algorithm which samples di-
rectly the fermionic two-point function and in this way eliminates CSD. Moreover, it allows to
specify the fermionic boundary conditions a posteriori, i.e. after the simulation, and allows simula-
tions directly in the massless limit. The approach is applicable to the Gross-Neveu (GN) model in
D = 2 dimensions, to the Schwinger model in the strong coupling limit in D = 2 andD = 3 dimen-
sions, to supersymmetric quantum mechanics and theN = 1 and 2 supersymmetric Wess-Zumino
model inD = 2 dimensions. In the present proceedings we concentrate on the application to the
GN and the Schwinger model.

Finally, we would like to emphasise that the reformulation based on the hopping expansion is
not new [3, 4, 5, 6]. Mostly, however, it has been applied to staggered fermions in the strong cou-
pling limit where a reformulation in terms of monomers and dimers [7] allows efficient algorithms
[8, 9] that were subsequently applied to many interesting systems [10, 11, 12], see also the recent
review by Chandrasekharan [13]. For Wilson fermions on the other hand the loop formulation
has been developed for the Schwinger model in the strong coupling limit [14] and the GN model
[5, 6, 15] and what we propose in [2] is just a very efficient algorithm for these loop formulations.

2. Loop formulation of Wilson fermions

We start with the reformulation ofD = 2 fermionic systems involving Wilson fermions in terms
of a statistical loop gas model. We use the GN model, a prototype for strongly interacting fermions,
as an illustrative example. The model is most naturally formulated in terms of Majorana fermions.
Employing the Wilson lattice discretisation for a Majoranafermion the Euclidean Lagrange density
reads

L =
1
2

ξ T
C (γµ ∂̃µ −

1
2

∂ ∗∂ + m)ξ − g2

4

(

ξ T
C ξ

)2
(2.1)
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whereξ is a real 2-component Grassmann field,C = −C T is the charge conjugation matrix and
∂ ,∂ ∗ and ∂̃ are the forward, backward and the symmetric lattice derivative, respectively. In the
continuum, the massless model enjoys a discrete chiral symmetry ξ → γ5ξ which on the lattice
is broken explicitly by the Wilson term1

2∂ ∗∂ . The symmetry can be restored in the continuum
by fine tuningm → mc. Further we note that a pair of Majorana fermions may be considered
as one Dirac fermion, i.e.ψ = 1/

√
2(ξ1 + iξ2), ψ = 1/

√
2(ξ T

1 − iξ T
2 )C , exposing theO(2N)

flavour symmetry explicitly. Since integrating out Majorana fermions yields the Pfaffian of the
antisymmetric Dirac operator, the model with 2N Majorana fermions is equivalent toN Dirac
fermions through the identity(PfD)2N = (detD)N .

At non-vanishing couplingg 6= 0 one usually employs a Hubbard-Stratonovich transformation
and introduces the scalar fieldσ ∝ ξ T C ξ . With M(x) = 2+m+σ(x) andP(±µ) = 1

2(1∓ γµ ) the
action then becomes the sum of monomer and hopping terms

SGN =
1
2∑

x
ξ T (x)C M(x)ξ (x)−∑

x,µ
ξ T (x)C P(µ)ξ (x+ µ̂). (2.2)

Using the nil-potency of Grassmann elements one can now expand the Boltzmann factor and per-
form an exact hopping expansion for the Majorana Wilson fermions [15]. We emphasise that this
can be done for any fermionic theory (bilinear in the fermionic fields). At each site, the fieldsξ T C

andξ must be exactly paired in order to give a non-vanishing contribution to the path integral,
∫

Dξ ∏
x

(

M(x)/2ξ T (x)C ξ (x)
)m(x) ∏

x,µ

(

ξ T (x)C P(µ)ξ (x+ µ̂)
)bµ (x)

(2.3)

where the occupation numbersm(x) = 0,1 for monomers andbµ(x) = 0,1 for bonds (or dimers)
satisfy the constraint

m(x)+
1
2 ∑

µ
bµ(x) = 1. (2.4)

This constraint encodes that only closed, non-intersecting paths survive the integration and we end
up with a closed loop representation of the partition function in terms of monomers and dimers,
i.e. Z = ∑ℓ ω(ℓ). The weightω of each loopℓ can be calculated analytically [5, 6, 15, 16] yield-
ing |ω(ℓ)| = 2−c/2 wherec is the number of corners in the loop, while the phase ofω(ℓ) de-
pends on the geometrical shape ofℓ. In D = 2 dimensions and for a torus geometry of the lattice,
sign[ω(ℓ)] ∈ {−1,1} depends on the boundary conditions (BC)εµ ∈ {0,1} and on the numbernµ

of loop windings in directionµ ,

sign[ω(ℓ)] = (−1)nµ (εµ+nµ ) . (2.5)

As a consequence the overall sign of a given configuration depends only on the fermionic BC and
the total winding numberl = {lµ} (modulo 2).

If we separate all configurations into the equivalence classes Li j where the subscriptsi, j
specify the total winding numberslµ (modulo 2) in the two directions, then the partition function
summing over all non-oriented, self-avoiding loops with positive weight,

Z = ∑
{ℓ}∈L

|ω [ℓ]|∏
x/∈ℓ

M(x), L ∈ L00∪L10∪L01∪L11, (2.6)
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Figure 1: N = 1 Majorana GN model on a 1282 lattice. Left: Comparison of simulation results (symbols)
and analytic calculations (dashed lines) for the partitionfunction ratiosZLi j /Z. The inset shows the repro-
duction of the zero mode ofZ00

ξ at mc = 0. Right: Integrated autocorrelation time of the condensate at the
critical pointmc = 0 fitted byτA ∼ Lz with z = 0.31(4). The inset shows a fit to a logarithmic dependence
on L.

represents a system with unspecified fermionic BC while systems with specific fermionic BC can
be constructed a posteriori by taking the signs of each classaccording to

Zε
ξ = 2ZL00 −

1

∑
i, j=0

(−1)εµ lµ ZLi j . (2.7)

Finally we note that if one considersN > 1 Majorana flavours the occupation numbersm,bµ are
decorated by the flavour indexα and one considersN different loop flavours. The monomer weight
M(x) depends on the local fermion density∑α mα(x) only and one ends up with a model of locally
coupled loops.

In the Schwinger model the hopping term contains aU(1) phase coming from the gauge field
φµ(x), and the non-oriented (Majorana) bonds carry an additionalfactor ∝ cosh(φµ(x)). More-
over the gauge field introduces an interaction between the two Majorana flavours proportional to
±sinh(φµ(x)), These additional factors introduce a sign problem since each loop can now have an
arbitrary sign. However, in the strong coupling limit, the two flavours are bound together. In the
present formulation it means that two different Majorana loops lay on top of each other and the
resulting double loop describes the world line of the bosonic bound state. It also turns out that
all the signs cancel in a non-trivial way and so the bosonisation is realised explicitly. Eventually
we end up with a model of non-oriented loops [14] in which all the loop and monomer weights
are squared compared to the GN model. Note further that eq.(2.7) no longer applies because the
fermionic BC have no impact on the BC of the corresponding bosonic bound state – instead the
relevant partition function is the one where all topological classes contribute positively, i.e.Z.

3. Simulation algorithm for loops and strings

A standard procedure to simulate loop gas models as the one described above is to perform
local loop updates involving plaquette moves only [17, 18].One problem with such an algorithm
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Figure 2: The Schwinger model in the strong coupling limit. Left: Partition function ratioZ00
ξ /Z on various

lattices. Right: Determination of the critical pointmc = −0.686506(27) on the largest lattice withL = 512.

is that it can not change between the topological classesL00,L10,L01,L11. Moreover, if the
correlation length of the system grows large these algorithms become highly inefficient and suffer
from CSD. Our proposal [2] (subsequently worked out in [19])follows the one of Prokof’ev and
Svistunov [20] and enlarges the configuration space by open fermionic strings. In the GN model
an open string corresponds to the insertion of a Majorana fermion pair{ξ (x),ξ T (y)C } at position
x andy into the path integral, and the open string samples directlythe correlation function

G(x,y) =

∫

Dξ e−SGNξ (x)ξ (y)T
C . (3.1)

This is the reason why CSD is eliminated: configurations are updated on all length scales up to
O(ζ ) whereζ is the correlation length corresponding to the fermionic two point function. As
a consequence the update remains efficient even at a criticalpoint where the correlation length
diverges. Contact with the partition functionsZLi j is made each time the open string closes and this
provides the proper normalisation for the expectation value of the 2-pt. function,〈ξ (x)ξ (y)T C 〉Z =

G(x,y)/Z, or any other observables. In practice, the ends of the open string are updated with a
standard local Metropolis or heat bath procedure [2]. Similar ideas have been around for a long
time in various other contexts [20, 21, 22] – what is new here is the practical application to Wilson
fermions and the demonstration that CSD is essentially eliminated.

4. Absence of critical slowing down

Before investigating the efficiency of the algorithm, we demonstrate its correctness by compar-
ing simulation results with analytically know expressions. For this purpose we use theN = 1 Majo-
rana GN model. This model is essentially a free fermion modeland can be solved exactly by calcu-
lating Pfaffians in momentum space. In the left plot of Figure1 we show the results for the partition
function ratiosZLi j/Z on a 1282 lattice from 2M closed path configurations (symbols) compared to
the exact results (dashed lines). The inset shows the combinationZ00

ξ = ZL00−ZL10−ZL01−ZL11

which has a zero mode at the critical pointmc = 0. The algorithm is indeed able to reproduce the
zero mode without problems. In order to investigate the efficiency of the algorithm at the criti-
cal point we measure the condensate〈ξ T C ξ 〉Zξ . The right plot of Figure 1 shows the integrated
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Figure 3: The Schwinger model in the strong coupling limit. Left: Finite size scaling ofZ00
ξ /Z for a second

order phase transition in the universality class of the Ising model. Right: Integrated autocorrelation time
of the condensate at the critical pointmc fitted by τA ∼ Lz with z = 0.25(2). The inset shows a fit to a
logarithmic dependence onL.

autocorrelation timeτA of the condensate as a function of the linear system sizeL. The dynamic ex-
ponentz relevant for CSD, i.e.τA ∼ Lz, turns out to bez ≃ 0.31(4). A dependence logarithmically
on L can also be fitted toL ≥ 32 yielding−14.2(2.5)+7.1(6) ln(L) with χ2/dof = 0.18.

Next we consider the Schwinger model in the strong coupling limit g → ∞ as a non-trivial
example for strongly interacting fermions. In the left plotof Figure 2 we show the partition function
ratio Z00

ξ /Z on various lattices up toL = 512. As in the Majorana GN model we find a zero
of the partition function which depends only very little on the extent of the lattice. We can use
Z00

ξ (mc) = 0 as a definition for the critical pointmc. It can be determined by a linear fit and
we obtainmc = −0.686506(27) (cf. right plot in Figure 2) from our simulations on the largest
lattice withL = 512. Further improvement could be achieved by employing standard reweighting
techniques as done in [23] where they obtainedmc = −0.6859(4). These calculations indicated a
second order phase transition in the universality class of the Ising model (with critical exponent
ν ≃ 1). Our results in the left plot of Figure 3 now confirm this by demonstrating that the partition
function ratiosZ00

ξ /Z as a function of the rescaled mass(m−mc)Lν with ν = 1 beautifully collapse
onto a universal scaling curve. The efficiency of the algorithm and the fact that CSD is essentially
absent is demonstrated in the right plot of Fig. 3 where we show the integrated autocorrelation time
τA of the energy as a function of the linear system sizeL at the critical pointm = mc. The functional
dependence onL can be well fitted (χ2/dof = 1.28) by τA ∼ Lz all the way down to our smallest
system sizeL = 8. We obtainz = 0.25(2) which is consistent with just using the largest two system
sizes. The autocorrelation time may also depend logarithmically on L and a fit toL ≥ 32 yields
−13.8(1.9)+ 6.6(4) ln(L) with χ2/dof = 1.00. In any case it is an amazing result that our local
Metropolis-type update appears to have a dynamical critical exponent close to zero.

5. Conclusions

In conclusion, we have presented a new type of algorithm for Wilson fermions in two di-
mensions. It relies on sampling directly 2-point correlation functions and essentially eliminates
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critical slowing down. We have successfully tested our algorithm on the Majorana GN model and
on the Schwinger model in the strong coupling limit and foundremarkably small dynamical criti-
cal exponents. The algorithm definitely opens the way to simulate efficiently generic loop models
(with positive weights) in arbitrary dimensions, in particular the GN model with any number of
flavours, the Thirring model, the Schwinger model and QED3 in the strong coupling limit, as well
as fermionic models with Yukawa-type scalar interactions like theN = 1 and 2 Wess-Zumino mod-
els, all with Wilson fermions.
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