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The path integral of a quantum system with an exact symmetry can be written as a sum of func-

tional integrals each giving the contribution from quantumstates with definite symmetry proper-

ties. We propose a strategy to compute each of them, normalized to the one with vacuum quantum

numbers, by a Monte Carlo procedure whose cost increases power-like with the time extent of the

lattice. This is achieved thanks to a multi-level integration scheme, inspired by the transfer matrix

formalism, which exploits the symmetry and the locality in time of the underlying statistical sys-

tem. As a result the cost of computing the lowest energy levelin a given channel, its multiplicity

and its matrix elements is exponentially reduced with respect to the standard path-integral Monte

Carlo. We briefly illustrate the approach in the simple case of the one-dimensional harmonic os-

cillator and discuss in some detail its extension to the four-dimensional Yang Mills theories. We

report on our recent new results in the SU(3) Yang–Mills theory on the relative contribution to the

partition function of the parity-odd states.
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Symmetries and exponential error reduction in YM theories on the lattice

1. Introduction

1.1 The problem

Lattice field theories can be studied numerically by Monte Carlo simulations. Theyallow to address
non-perturbative problems from first principles, and for most of the theories the lattice provides the
only known non-perturbative definition. The mass of the lowest states in a given channel can,
for instance, be extracted from the Euclidean time-dependence of a suitable two-point correlation
function. Very often, however, the statistical error of the Monte Carlo estimate grows exponen-
tially with time, and in practice it is not possible to find a window where statistical andsystematic
errors are both under control. The problem is easily explained by lookingat the states contributing
asymptotically in time to the two-point function and to its variance. Whenever the energy of the
asymptotic state in the variance is smaller than twice that in the two-point function, the noise to
signal ratio is going to grow exponentially in time [1, 2]. The standard Monte Carlo approach fails
basically because for any given field configuration all asymptotic states ofthe theory are allowed
to propagate in the time direction, regardless of the quantum numbers of the source fields. Their
contributions disappear in the Monte Carlo average for the two-point function but sum up in the
noise. As shown in the following subsection, the issue is already there for asimple system such as
the harmonic oscillator. We use the latter to introduce the basic ideas of the methodthat was pro-
posed in [3, 4], a “symmetry-constrained” Monte Carlo, and to show how itavoids the exponential
increase of the signal-to-noise ratio.

1.2 The case of the harmonic oscillator

We consider the one-dimensional harmonic oscillator on the lattice. We recall here a few basic
equations. More details can be found in [3] to which we refer for any unexplained notation. The
system is described by the Hamiltonian

Ĥ =
p̂2

2m
+V(x̂) with V(x̂) =

1
2

mω2x̂2 . (1.1)

This operator is invariant under parity transformations, therefore its eigenstates can be classified
according to a parity quantum number (+ or −). We label the corresponding energy levels asE

+
i

andE
−
j respectively. The transfer operator between two consecutive time slicesis defined as

T̂ = e−
a
2V(x̂) e−a p̂2

2m e−
a
2V(x̂) , (1.2)

an its matrix elements in the coordinate basis

〈xn+1|T̂ |xn〉 ≡
( m

2πa

)1/2
Tn+1,n (1.3)

can be computed explicitly
Tn+1,n = e−aLn+1,n , (1.4)

with

Ln+1,n ≡ L (xn+1,xn) =
m
2

(

xn+1−xn

a

)2

+
V(xn+1)

2
+

V(xn)

2
. (1.5)
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Symmetries and exponential error reduction in YM theories on the lattice

The statistical variance associated to the two-point correlation function〈xl xk〉 (interpolating
parity odd states) is

σ2 = 〈x2
l x2

k〉−〈xl xk〉2 , (1.6)

and, at asymptotically large time separations, the signal-to-noise ratio can be easily computed in
the underlying quantum field theory

〈xl xk〉
σ

=
|〈E −

0 |x̂|E +
0 〉|2

|〈E +
0 |x̂2|E +

0 〉| e−a(E −
0 −E

+
0 )|l−k| + · · · (1.7)

The ratio decreases exponentially in time, as announced. As we will describe in the following the
problem here can be solved by introducing the “sign” and the “module” fields.

We define the complete set of parity eigenstates

|x,±〉 =
1√
2
(|x〉± |−x〉) , P̂|x,±〉 = ±|x,±〉 . (1.8)

The invariance of the Hamiltonian under parity implies

〈s′,xn+1|T̂ |xn,s〉 =

(

2m
πa

)1/2

Ts
n+1,n δs′s , (1.9)

with

Ts
n+1,n =

1
2

e−aΛ+
n+1,n

{

eaΛ−
n+1,n +se−aΛ−

n+1,n

}

, (1.10)

Λ±
n+1,n =

1
2

{

L (−xn+1,xn)±L (xn+1,xn)
}

, (1.11)

and the functional integral can be written as

Z = ∑
s=±

Zs , Zs =
∫ N−1

∏
n=0

dxnTs
n+1,n , (1.12)

whereN is the extent of the lattice. We further define

T+
n+1,n ≡ e−aL+

n+1,n = e−aΛ+
n+1,n cosh{aΛ−

n+1,n} , (1.13)

and cast the functional integrals in the form

Z+ =
∫ N−1

∏
n=0

dxne−S+
, Z− =

∫ N−1

∏
n=0

dxne−S+
N−1

∏
m=0

tanh{aΛ−
m+1,m} , (1.14)

whereS+ ≡ a∑N−1
n=0 L+

n+1,n. The path integral is thus rewritten as a sum of two functional integrals
giving the contribution from parity even and odd states respectively. Each integrand is a product
of transfer matrix elements between quantum states with definite parity. The two-point correlation
function reads (k < l )

〈xl xk〉 =
1
Z

∫ N−1

∏
n=0

dxne−S+
{

xl

l−1

∏
m=k

tanh{aΛ−
m+1,m}xk

+
N−1

∏
m=l

tanh{aΛ−
m+1,m}xl xk

k−1

∏
m=0

tanh{aΛ−
m+1,m}

}

. (1.15)
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Figure 1: Left: two-point correlation function versus the time distancet/a of the sources. Right: errors
on the correlation function as obtained with the multi-level algorithm (SCMC) and with the standard path
integral Monte Carlo (PIMC).

Each term is now the expectation value of a factorized observable in a system described by the
actionS+. The expression reminds of the factorized form used for the correlatorof Polyakov loops
in the pure gauge theory in [5]. As done there a multi-level integration schemecan be introduced
for the system and the observable discussed here. The key ingredientsare sub-lattice averages, i.e.
averages computed by numerically integrating over the degrees of freedom in a thick time-slice of
the lattice with the variables at the boundaries kept fixed, and the recursive relations, which allow
to obtain averages on large thick time-slices as the product of those on smallerones integrated over
their boundaries configurations. Both properties are due to the locality of the action. We do not
repeat here the details concerning the construction of the algorithm, they can be found in [3] but
rather report on the main results.

In the left plot of Figure 1 we show the two-point correlation function computed on a lattice
with N = 64 points, with statistical errors being smaller than symbols. The error (SCMC) is shown
on the right plot of the same Figure. The signal-to-noise ratio is depleted, asexpected, (only)
inversely proportional to the time distance of the sources. For comparison inthe same plot it is also
shown the statistical error obtained with a standard Monte Carlo procedure(PIMC) which needed
roughly the same CPU time. It is clear that with our strategy the statistical error isexponentially
reduced, and at large time distances it is lowered by many orders of magnitude. The effective
energy-splitaω̃(t) extracted from the correlator is shown in the left plot of Figure 2, and it is in
perfect agreement with the theoretical expectation [6]. On the right plot of the same figure it is
shown the effective estimateR(t) of the square of the matrix element〈E −

0 |x̂|E +
0 〉 computed as

R(t) =
〈xl xk〉 eω̃ T

2

2cosh
[

ω̃
(

T
2 −a|l −k|

)] , (1.16)

which also agrees very well with the analytical result.

The approach described here is of inspiration for systems with a larger number of degrees of
freedom. In that case, however, one cannot make sense of the “sign”and “module” fields. New
concepts have to be introduced as we illustrate in the following for theSU(3) Yang-Mills theory
[4].
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Figure 2: Left: effective energy difference extracted from the two-point correlator at any time separation
t/a. Right: the ratioRas defined in the text.

2. Extension to Yang-Mills theories on the lattice

We again divide the parity even sector of the theory from the parity odd, naming the energy levels
E+

i andE−
j respectively. The statistical variance of the estimate of a two-point correlation func-

tion 〈O(x0)O(0)〉 of a parity-odd interpolating operatorO, computed by the standard Monte Carlo
procedure, is defined as

σ2 = 〈O2(x0)O
2(0)〉−〈O(x0)O(0)〉2 . (2.1)

At asymptotically-large time separations the signal-to-noise ratio takes the form

〈O(x0)O(0)〉
σ

=
|〈E−

1 |Ô|0〉|2
|〈0|Ô2|0〉|

e−E−
1 x0 + · · · (2.2)

i. e. the signal is again depleted exponentially in time.

For the one-dimensional harmonic oscillator the quantity tanh{aΛ−
m+1,m} represented the ratio

Z−/Z+ for a system of one time-slice with fixed boundary configurations. Due to theregularity of
the spectrum this ratio is of O(1). The same cannot be expected for systems with many degrees
of freedom, as the four-dimensional Yang-Mills theory, the ratio will ratherbe of O(e−(L/a)3

), with
L the spatial extent of the lattice. However, if one considers systemsd time-slices large, with
d ∼ 1/Tc andTc the critical temperature, the same ratio is now expected to be of O(e−E−

1 d) for each
boundary configuration. These are the quantities we want to directly access and use to rewrite our
observables. To this end we first need to briefly recall the formalism of thetransfer matrix, we refer
to [4] for a more thorough discussion.

2.1 Transfer matrix

We adopt Wilson’s regularization of gauge theories [7]. The corresponding transfer matrix has been
explicitly constructed in [8, 9, 10, 11]. The functional integral with periodic boundary conditions
in time can be written as

Z =
∫ T−1

∏
x0=0

D3[Vx0]T
[

Vx0+1,Vx0

]

(2.3)
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Symmetries and exponential error reduction in YM theories on the lattice

where the transfer matrix elements among states|Vx0〉 in the coordinate basis are defined as

T
[

Vx0+1,Vx0

]

=
∫

D[Ω] e−L[VΩ
x0+1,Vx0]

, (2.4)

with
L
[

Vx0+1,Vx0

]

= K
[

Vx0+1,Vx0

]

+
1
2

W
[

Vx0+1

]

+
1
2

W
[

Vx0

]

, (2.5)

and|VΩ
x0
〉 is the result of a gauge transformationΩ on the state|Vx0〉. The kinetic and the potential

contributions to the Lagrangian are given by

K
[

Vx0+1,Vx0

]

= β ∑
x,k

[

1− 1
3

ReTr
{

Vk(x0 +1,x)V†
k (x0,x)

}

]

, (2.6)

and

W
[

Vx0

]

=
β
2 ∑

x
∑
k,l

[

1− 1
3

ReTr
{

Vkl(x0,x)
}

]

, (2.7)

respectively, whereVkl is the spatial plaquette computed with the linksVk(x). By exploiting the
invariance of the Haar integration measure under left and right multiplication itis easy to show that
the transfer matrix is gauge invariant. For a thick time-slice, i.e. the ensemble of points in the sub-
lattice with time coordinates in a given interval[x0,y0] and bounded by the equal-time hyper-planes
at timesx0 andy0, the transfer matrix elements can be introduced by the formula

T
[

Vy0,Vx0

]

=
∫ y0−1

∏
w0=x0+1

D3[Vw0]
y0−1

∏
z0=x0

T
[

Vz0+1,Vz0

]

. (2.8)

The parity transformation acts on the states in the coordinate basis as

℘̂|V〉 = |V℘〉 , |V〉 = P̂G|V〉 , V℘
k (x) = V†

k (−x− k̂) , (2.9)

whereP̂G is the projector on gauge invariant states. Again, we can then define a complete set of
parity eigenstates

|V,±〉 =
1√
2

[

|V〉± |V℘〉
]

, ℘̂|V,±〉 = ±|V,±〉 , (2.10)

and their transfer matrix elements are given by

〈s′,Vx0+1|T̂|Vx0,s〉 = 2δs′s Ts
[

Vx0+1,Vx0

]

, (2.11)

Ts
[

Vx0+1,Vx0

]

=
1
2

{

T
[

Vx0+1,Vx0

]

+sT
[

Vx0+1,V
℘
x0

]}

. (2.12)

For a thick time-slice the matrix elements between parity states can be introduced byexploiting the
same composition rule as in Eq. (2.8) with T replaced by Ts. In addition, the relations

∫

D3[Vz0]T
s
[

Vy0,Vz0

]

T−s
[

Vz0,Vx0

]

= 0 , (2.13)

∫

D3[Vz0]T
s
[

Vy0,Vz0

]

T
[

Vz0,Vx0

]

= Ts
[

Vy0,Vx0

]

(2.14)

6
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Symmetries and exponential error reduction in YM theories on the lattice

hold. In particular they imply that

Ts[Vy0,Vx0]

T [Vy0,Vx0]
=

1
Zsub

∫

D4[U ]sube−S[U ] Ts[Uy0,Uy0−1]

T [Uy0,Uy0−1]
, (2.15)

an useful expression for the practical implementation of the multi-level algorithm described in
the following. The subscript “sub” indicates that the integral is performedover the dynamical
field variables in the thick time-slice[x0,y0] with the spatial componentsUk(x) of the boundary
fields fixed toVk(x0,~x) andVk(y0,~x) respectively. Finally, by replacing T[Vx0+1,Vx0] in Eq. (2.3) by

∑sTs[Vx0+1,Vx0] and repeatedly applying Eq. (2.13), it is possible to rewrite the path integralas a
sum of functional integrals

Z = ∑
s=±

Zs , Zs =
∫ T−1

∏
x0=0

D3[Vx0]T
s
[

Vx0+1,Vx0

]

, (2.16)

each giving the contribution from gauge-invariant parity-even and -odd states respectively.
The insertion of Ts[Vy0,Vx0] in the path integral plays the rôle of a projector, as on each config-

uration it allows the propagation in the time direction of states with paritysonly. Indeed the parity
transformation of one of the boundary fields in T[Vy0,Vx0] flips the sign of all contributions that it
receives from the parity-odd states while leaving invariant the rest. The very same applies to the
path integral in Eq. (2.3) if the periodic boundary conditions are replacedby℘-periodic boundary
conditions, i.e.VT = V℘

0 . All contributions from the parity odd states are then multiplied by a
minus sign.

2.2 The hierarchical integration scheme

To determine the parity projector between two boundary fields of a thick time-slice, the basic
building block to be computed is the ratio of transfer matrix elements

R[Vx0+d,Vx0] =
T[Vx0+d,V

℘
x0 ]

T[Vx0+d,Vx0]
. (2.17)

As mentioned above, ford of O(1/Tc), the ratioR is expected to be ofO(1). However the integrands
in the numerator and in the denominator on the r.h.s of Eq. (2.17) are, in general, very different
and the main contributions to their integrals come from different regions of thephase space. The
most straightforward way for computingR is to define a set ofn systems with partition functions
Z1 . . . Zn designed in such a way that the relevant phase spaces of successiveintegrals overlap and
thatZ1 = T[Vx0+d,V

℘
x0 ] andZn = T[Vx0+d,Vx0]. The ratioR can then be calculated as

R =
Z1

Z2
× Z2

Z3
× . . .× Zn−2

Zn−1
× Zn−1

Zn
, (2.18)

with each ratio on the r.h.s. being computable in a single Monte Carlo simulation by averaging the
proper reweighting factor.

For the case at handZ1 andZn are the partition functions of two systems differing only for
the boundary conditions in time. In both cases Dirichlet boundary conditionsare imposed but the
boundary configurations at timex0 + d differ by a parity transformation. Instead of relating the

7
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Symmetries and exponential error reduction in YM theories on the lattice

boundary configurations in such a way, we change the action of one of the two systems on the
last time-slice, by introducing a new temporal link connecting the pointx,x0 + d−1 on the last
dynamical time-slice to its parity transformed−x,x0 +d on the boundary. We call the associated
plaquette “parity twisted” space-time plaquette andK℘ (parity twisted kinetic term) the sum of
such plaquettes (see Figure 3). To interpolate between the two systems we slowly switch off the

Figure 3: Two dimensional representation of the plaquettes in the kinetic termsK (r = 1/2) andK℘ (r =

−1/2) on the time-slicey0 − 1. The telescopic algorithm described in the text bridges between the two
systems inL3 steps.

couplingβ in K by decreasing it in steps of sizeε = 1/L3 while increasing the coupling inK℘

by the same amount, we distinguish the interpolating actions by a parameter−1/2≤ r ≤ 1/2. In
this way we move inL3 steps from one system to the other. This means we need to perform a
chain ofL3 Monte Carlo simulations within a Monte Carlo simulation and we therefore have an
algorithm, which scales with the second power of the volumeL3. This is the case also for other
known methods for computing ratios of partition functions [12, 13, 14].

Once the projectors have been computed, the ratio of partition functionsZs/Z can be calculated
by implementing the hierarchical two-level integration formula

Zs

Z
=

1
Z

∫

D4[U ]e−S[U ] Ps
m,d

[

T,0
]

(2.19)

where Psm,d

[

y0,x0

]

is defined as

Ps
m,d

[

y0,x0

]

=
m−1

∏
i=0

Ts[Ux0+(i+1)·d,Ux0+i·d]

T[Ux0+(i+1)·d,Ux0+i·d]
(2.20)

with m≥ 1 andy0 = x0 + m· d. The procedure can, of course, be generalized to a multi-level
algorithm. For a three-level one, for instance, each ratio on the r.h.s of Eq. (2.20) can be computed
by a two-level scheme. For each configuration of the boundary fields, the magnitude of the product
in our observable Psm,d[T,0] is proportional toe−E−

1 T , and the statistical fluctuations are reduced
to this level. This has to be compared to the standard case in which each configuration gives
a contribution to the signal which decreases exponentially in time, whereas it contributesO(1)

8
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Symmetries and exponential error reduction in YM theories on the lattice

to the noise (variance) at any time distance. To achieve an analogous exponential gain in the
computation of the correlation functions, the projectors Ts have to be inserted in the proper way
among the interpolating operators. As a technical aside we remark that the computation of R
requires a thermalization procedure for each value ofr. We do not expect the latter to be particularly
problematic since, as mentioned above, expectation values for consecutive values ofr refer to path
integrals with the relevant phase spaces which overlap. The ratio R is computed by simulating
systems corresponding to consecutive values ofr one after the other, and by starting from the one
used to extract the boundary fields (r = 1/2).

2.3 Results

In the four-dimensional SU(3) Yang-Mills theory we have simulated lattices withan inverse gauge
coupling ofβ = 6/g2

0 = 5.7 which corresponds to a value of the reference scaler0 of about 2.93a
[15, 16]. The number of lattice points in each spatial direction has been setto L = 6,8 and 10
corresponding to a linear size of 1.0, 1.4 and 1.7 fm respectively. For each spatial volume we have
considered several time extentsT, the full list is reported in Table 1 together with the number of
configurations generated, the details of the multi-level simulation algorithm usedfor each run and
the results forZ−/Z and for the effective massM− of the first parity-odd glueball state extracted
from that ratio:

M− = − 1
T

ln

(

Z−

Z
(T)

)

. (2.21)

The natural logarithm ofZi−1
Zi

for the interpolating systems in Eq. (2.18) is shown as a function
of r in the left panel of Fig. 4 for a typical configuration of the run B3. As expected, its value is of
O(1) for each value ofr. Its almost perfect asymmetry underr →−r, however, makes the product
of all theL3 results a quantity ofO(1). This impressive cancellation, which is at work forT > 3 on
all volumes considered, can be better appreciated in the right panel of thesame Figure, where the
sum of the function in the interval[−r, r] is plotted for a subset of values ofr. It is the deviation
from the exact asymmetry which flips in sign under a parity transformation of one of the boundary
fields, and forms the signal we are interested in.

The Monte Carlo history of P−2,T/2[T,0] is shown in Figure 5 for the lattice A5. The central
dashed line corresponds to the average value, while the other two delimit the one standard devia-
tion region. As expected the Monte Carlo history is very regular and each configuration gives an
estimate of the observable which is of the right size. Fluctuations are five times the average value
at most. We have observed similar Monte Carlo histories also for the other runs.

Finally we show the results forZ−/Z andaM− in Figs. 6 and 7 respectively. We have been
able to follow the exponential decay in the ratioZ−/Z over almost 7 orders of magnitude. The
data at large values ofT/a can be used to estimate the multiplicity of the first parity odd state, a
quantity which is not accessible within the other approaches. To this end the precision however has
to be increased, as for now we assume the multiplicity to be one, which justifies thedefinition of
the effective massM− in Eq. 2.21. Figure 7 shows that the algorithm works as expected as the error
on the effective mass could be kept constant to the level of a few percent up to a separation of about
3.5 fm. It also shows that finite size effects are rather large for lattices of linear size around 1 fm
(L/a= 6) but they become negligible within the present accuracy once a size of 1.4 fm (L/a= 8) is

9
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Symmetries and exponential error reduction in YM theories on the lattice

Lattice L T Nconf Nlev d Z−
Z aM−

A1 6 4 50 2 4 0.409(8) 0.223(5)

A2 5 50 2 5 0.177(13) 0.346(14)

A3 6 50 2 6 0.069(7) 0.446(17)

A4 8 175 2 4 1.47(28)·10−2 0.528(24)

A5 10 50 2 5 2.2(5)·10−3 0.611(20)

A6 12 90 2 6 6.6(17)·10−4 0.610(21)

A7 16 48 2 8 2.8(8)·10−5 0.655(18)

A8 20 48 3 {5,10} 1.5(5)·10−6 0.670(15)

B1 8 4 20 2 4 0.426(8) 0.213(5)

B2 5 25 2 5 0.061(6) 0.558(21)

B3 6 75 2 3 1.65(26)·10−2 0.685(27)

B4 8 48 2 4 1.37(26)·10−3 0.824(24)

B5 12 48 3 {3,6} 3.6(18)·10−6 1.045(41)

B6 16 36 3 {4,8} 5.2(19)·10−8 1.048(23)

C1 10 4 20 2 4 0.455(12) 0.197(6)

C2 5 24 2 5 0.060(3) 0.561(11)

C3 6 50 2 3 1.6(4)·10−2 0.687(39)

C4 8 48 2 4 5.2(16)·10−4 0.944(39)

C5 12 24 3 {3,6} 3.3(17)·10−6 1.052(43)

Table 1: Simulation parameters and results.Nconf is the number of configurations of the uppermost level,
Nlev is the number of levels andd is the thickness of the thick time-slice used for the variouslevels. The
effective massM− is given by−T−1 ln(Z−/Z).

reached. We therefore quoter0mG− = 3.07(7) from L/a = 8, T/a = 16 as a preliminary result for
the mass of the lightestJPC = 0−+ glueball at a lattice resolution of 0.17 fm with Wilson’s gauge
action. Given the quite large value of the lattice spacing, cutoff effects may affect this number
significantly.

3. Conclusions and outlook

For most of the two-point functions computed on the lattice the noise to signal ratio grows expo-
nentially with the time separation of the source and the sink. This disease can becured by imposing
the propagation of states with the desired quantum numbers only on each (gauge) configuration.
The algorithm proposed here solves the problem by making use of the symmetry properties of
the underlying quantum theory. We have numerically tested the approach in the four-dimensional
SU(3) Yang-Mills theory, by computing the mass of the lightest parity-odd glueball. For a given
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Figure 4: Left: the natural logarithm ofZi−1
Zi

is shown as a function ofr (statistical errors are smaller than
symbols) for a typical configuration of the run B3. Right: the sum of the points in the interval[−r, r] is
plotted as a function ofr (one each eighth point for visual convenience).
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Figure 5: Monte Carlo history of the quantity P−2,5[10,0] for the run A5.

precision on the latter the algorithm scales as a power ofT, the total time extent of the lattice, and
we have therefore been able to follow an exponential decay over 7 orders of magnitude and up to
separations of 3.5 fm. That allows to isolate the contribution of a single state with unprecedented
confidence. We have also studied finite size effect and collected strong indications that, for the
effective mass considered here and within our statistical errors, those are negligible forL > 1.4 fm.
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Figure 6: The quantityZ−/Z vs T/a.

Figure 7: The quantityaM− vs T/a.

The multiplicity of the state can also be computed using the approach described,and in the near
future we plan to increase the accuracy on its determination, which can be obtained only with lim-
ited precision by using the data produced so far. The reduction of systematic uncertainties related
to lattice artifacts remains an expensive task as the algorithm scales roughly as (L/a)6.

The inclusion of other symmetries is straightforward. We have already implemented charge-
conjugation and tested it in small volumes, observing basically the same efficiency of the integra-
tion scheme as for the parity discussed here. Different symmetry transformations can be actually
considered simultaneously and we plan to include cubic rotations and translations. The mass of the
lightest state in any sector specified by the quantum numbersJPC could then be computed without
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suffering from the exponential problem [17].
A way to generalize the ideas reported here to systems including fermion degrees of freedom

is, at present, not known. Among other advantages, such an extensionwould allow to compute
the ratio between the partition functions at different baryon quantum numbers avoiding the sign
problem, which affects the simulations at finite density.
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