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In finite-size scaling analyses of Monte Carlo simulatiohsezond-order phase transitions one
often needs an extended temperature/energy range aroaimditibal point. By combining the
replica-exchange algorithm with cluster updates and aptagaroutine to find the range of in-
terest, we introduce a new flexible and powerful method fetesyatic investigations of critical
phenomena. As a result, we gain two further orders of madeitn the performance for 2D and
3D Ising models in comparison with the recently proposed §Maamndau recursion for cluster
algorithms based on the multibondic algorithm, which iatty a great improvement over the
standard multicanonical variant.
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While much attention has been paid in the past to simulations of first-order phas#ions
and systems with rugged free-energy landscapes in generalized éeséumbbrella, multicanon-
ical, Wang-Landau, parallel/simulated tempering sampling) [1], the merits of dnisBoltzmann
sampling approach also for simulation studies of critical phenomena haspbégad out only
recently. In Ref. [2], Berg and one of the authors combined multibondigpBag [3] with the
Wang-Landau recursion [4] to cover the complete desired “critical” teatpex range in a single
simulation for each lattice size, where the “desired” range derives froanedul finite-size scaling
(FSS) analysis of all relevant observables. Since the individualigiieg ranges of the involved
observables may be quite disparate, this scaling analysis is the second imhpwtadient of the
method.

Our new replica-exchange cluster algorithm is a combination of parallel témypeethods [5]
with the Swendsen-Wang cluster algorithm [6]. For the parallel temperimgepure we use a set
of Nrep replica, where the number of replica depends on the reweighting ranigie theeded for
the FSS analysis [7]. To determine this range we perform at the beginhimgr gimulations a
short run in a reasonable temperature interval. We choose the numlegliofiN.e, so that the
overlap of adjacent histograms is always larger than 25%. This is reggés®nsure that the multi-
histogram reweighting [8] works properly. Using the data of this shartasiinput for the multi-
histogram reweighting routine, we determine the pseudo-critical paffits = C (BT) of the
specific heaC(B) = B2V ((€?) — (€)?) and x["® of the susceptibilityx (8) = BV ((m?) — (|m|)?),
wheree = E/V is the energy density and = M /V the magnetization density. Furthermore, we
measured the maxima of the slopes of the magnetic cumuldptg) = 1 — (m?)/3(|m|)? and
Ua(B) = 1— (m*)/3(mP)2, and of the derivatives of the magnetizatioijm|) /dg3, d(In|m|) /dB,
andd(Inm?) /dB, respectively. We also include the first structure faGor(see, e.g., Ref. [9]) in
our measurement scheme to be directly comparable with the results of R&hEL] we determine
the B values where the observabl8s- {C, x,...} reach the vaIu@_(BS*L/*) = r§"®, where we

use the moderate value=2/3. This leads to a sequence@’lf* values, wherggd, > B and
Bs < B&Y. In Fig. 1, we show as an example for such a’sequence the rewéigmm ¢orC,
X,'dUZ/dB, andS,, for the two-dimensional (2D) Ising model with linear lattice size- 8. The
actual simulation range is then given by the largest interval of the seeuérad! BSTL/_ values. In
our example in Fig. 1, this would lead to an inter{@rL,BCfL]. As one also can see in this figure,

the value ofﬁg&rl_ is further away from the critical point then all othﬁglf* values; therefore, if
one is not particularly interested in the first structure factor, then the simulainge can be chosen
narrower. We now use the thus determined interval with the same numbealic&rfor our actual
measurement run. This interval is usually narrower then the original estiheatee the overlap of
the histograms becomes larger and the applicability of the multi-histogram raimgighethod is
assured.

Let us now illustrate the work flow of our new method for the 2D Ising modetehiee started
with a reasonable choice of the temperature interal= 0.15 andB;” = 0.6, for our smallest
lattice L = 8. For the large systems we used the measurement interval of the smallen sigste
input interval. Then we used the following general recipe:

1. choose an input temperature interval
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Figure 1: Reweighted observables for the 2D Ising model wite- 8. The symbols mark the maximum
values§"® and the valuéi_(Bg/f) =r§"®withr =2/3.

>

9.

10.

choose the number of replica

compute the simulation temperatures for the replica (e.g., equidistarji.y, 11])
perform several hundred thermalization sweeps

perform a short measurement run

check the overlap of the energy histograms: if the overlap is too smal?, eglica and goto
step 3, else go on

use multi-histogram reweighting to determﬁ@_ andBS‘L for all observable$

update the temperature interval according to the largest interfg} cindg, ,
i.e., [mins{Bg, }, maxs{BgL}]

perform several hundred thermalization sweeps

perform the measurement run

After choosing an input temperature interval and a number of replica éosrfallest system,

our program simulated system sizes fram= 8 up toL = 1024 fully automatically. This shows
how robust our new method is. Table 1 gives an overview of the automatieiymined tem-
perature intervals, which roughly scale with?/V, wherev is the standard critical exponent of the
correlation length. This scaling can also be used to extrapolate the inpwairftarlarger system
sizes. In two dimensions, the branch coming from the specific heat haatithogically scaling,
therefore, one could use this knowledge to improve the extrapolation fosgbigal case. We re-
frain from such modifications to keep the program as generally usablesaibfe. For comparison
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Table 1: Simulation range and numbers of replica for the 2D Ising rheiieulations orl_? lattices.
L B BE_ Nrep

8 0.194654 0.488 895

16 0.319082 0.469 406

32 0.380126 0.458 969
64 0.410836 0.452740 10
128 0.425789 0.447917 10
256 0.433297 0.444115 12
512 0.436997 0.443161 12
1024 0.438407 0.442 653 16
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Figure 2: The temperature interval determined using the specificdeatfunction of the system size. The
horizontal line indicates the critical inverse temperafuhe other lines show the exact results calculated
from the formula of Ferdinand and Fisher [12]. The circledidate the simulation ranges determined fully
automatically, cf. Table 1, and the boxes show for compkedsithe measured values gF* andf: .

we show in Fig. 2 the calculated temperature intefﬁg’lL, B&L] using the specific heat formula of
Ferdinand and Fisher [12] and the automatically determined interval ofigonitam.

To assess the performance of the method, we measured the integratexfraigton time
Tint for each temperature and system size. We found that the integrated raglaton timesTin
for the energy, squared magnetization and the first structure factier sty weakly with the
system sizd.. As an example we show,(E) as a function oL in Fig. 3. The critical slowing
down scaled] L% here we find a dynamical critical exponent 0.15(3). When we also take
the number of replic&lep into account and define an effective autocorrelation timgsccording
t0 Tett = Nrep X Tint O L=, we find a power law with an exponends = 0.44(2). For Tiny and Tef
of m? we find slightly smaller valuesz = 0.09(3) and z = 0.37(3), respectively. Fof, the
dynamical critical exponent is compatible with 0 and fgf we findz. = 0.29(2). Even the larger
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Figure 3: Autocorrelation timegiy and tef for the energy of the 2D Ising model, whergs = Nrep X Tint
andNep is the number of replica.

absolute values of the effective autocorrelation times are almost an drnk@goitude smaller and
scale with a much smaller exponent than using the recently proposed multibwadig:-Landau
method [2].

Due to the fact that in the 2D Ising model the critical exponemf the specific heat is zero,
the reweighting range of a single Monte Carlo simulatioflis~/V whereas the range of interest
scales withL~"/V (with the range parameterdefined above and = 1). The number of replica
needed thus increases with the system si1é’a$)/V, cf. Ref. [13]. In Fig. 4 we show the numbers
of replica needed as a function of the system size for various valuesWweé also included least
square fits according to the previously given scaling form and find sonedole agreement. In
the 3D Ising model where =~ 0.11, the reweighting range scales equally to the range of interest
according td_—1/V, so that we can use here the same number of replica for all system sizes. |
2D simulations only th@ " branch is determined by the scaling of the specific heat. If one @nits
as a criterion to specify the range of interest in this non-generic cagayhieers of replica can also
be fixed for all system sizes. As a nice side effect, the dynamical critipaireent for the effective
autocorrelation times is even smaller than in the case includidgve findz= ze = 0.32(1) for
the energy and = z = 0.24(1) for m?. If the reweighting range is now too narrow to determine
the critical exponentr directly, one still can use the hyperscaling relatmr- 2 — Dv with the
dimensionalityD.

In Table 2 we give an overview of the automatically determined temperaturgatgdor the
3D Ising model which are similar to the intervals compiled in Table | of Ref. [2}.ifreasing
the numbers of sweeps in the first short measurement run would lead tteadstimate for the
temperature interval. We used only about 1% of our CPU time for this determinatireasing
this percentage may gain a further improvement of the final results. In kig show the integrated
autocorrelation times as well as the effective autocorrelation times for thgyeokthe 3D Ising
model. Here we find for the dynamical critical exponenrt 0.71(3). In this casetef is just a
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Figure 4. The number of replica needed to cover the range of interegshéspecific heat plotted as a
function of the system size for the 2D Ising model. The shilines are least square fits according to
constL(A-"/V with r andv = 1 fixed.

Table 2: Simulation range and numbers of replica for the 3D Ising rheteulations orl_2 lattices.
L BE BEL Nrep
20 0.211098 0.233487 16
30 0.216204 0.228 823 16
44 0.218717 0.226 695 16
56 0.219651 0.225533 16
66 0.220115 0.224 196 16
80 0.220517 0.224 195 16

constant shift for all system sizes, due to the fact that the number bfadp independent of
the system size. We fingl= 0.70(3) for the autocorrelation times of? andz = 0.38(4) for S, .
In the 3D Ising model the absolute values of the integrated autocorrelation diraedmost two
orders of magnitude smaller and even the effective autocorrelation timea arder of magnitude
smaller than those reported for the multibondic scheme in Ref. [2]. Since aldgtiamical critical
exponents are smaller, the asymptotic critical slowing down is less prondunce

To summarize, we have introduced a very flexible approach for a systededticmination
and simulation of the critical energy range of interest for second-grdase transitions, which
one needs to measure critical exponents. The efficiency of the metheddtepf course on the
chosen or available update scheme (Metropolis, heat-bath, Glaubeerclu3 in the particular
case. Since our method is completely general and can be used with ang spldeme, it could be
employed for all simulations in high-energy physics and quantum field thstatystical physics,
chemistry and biology where one is interested in critical exponents.
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Figure5: tin andtes for the 3D Ising model, wheres = Nrep X Tint andNrep = 16 is the number of replica.
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