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The phase diagram ofSU(N) gauge theories with fermions in an arbitrary representation Rcan be

calculated on finite volume manifolds such asS1 ×S3. WhenS3 is small a perturbative anal-

ysis is possible and the weak-coupling analogue of the pure Yang-Mills theory confinement-

deconfinement transition is accessible in the largeN limit. We calculate the largeN phase diagram

of adjoint QCD [SU(N) gauge theory with adjoint fermions] where periodic boundary conditions

are applied to fermions onS1 such that the confined phase is favored for light enough adjoint

fermion massm. We calculate the value ofmRS3 below which the confined phase is favored for

all LS1/RS3 and discuss the implications for largeN volume reduction. We calculate also the phase

diagram forN = 3 and compare with recent lattice results.
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1. Introduction

The calculation of observable quantities in the confined phase of QCD and many QCD-like
theories is complicated by the fact that the coupling strength is large. Lattice simulations are the
dominant technique for performing calculations in the confining, strong coupling limit, however,
they can be computationally demanding since large lattice sizes are often required. In this proceed-
ings we discuss aspects of two shortcuts that can be taken together (or separately) to obtain quick
qualitative results from QCD and QCD-like theories. It is based on our recent paper [1].

The first technique involves the use of two largeN equivalences. One, called orientifold pla-
nar equivalence, is the largeN equivalence betweenSU(N) [or U(N)] gauge theory with adjoint
fermions (adjoint QCD), andSU(N) gauge theory with symmetric or antisymmetric representation
fermions [QCD(AS/S)] [2]. This is true as long as charge conjugation symmetry is not broken in
QCD(AS/S) [3], and for only the bosonic subsector of adjointQCD. In the case ofN = 3, QCD(AS)
is equivalent to QCD, so the largeN limit of QCD(AS) is also a largeN limit of QCD. The second
equivalence is the largeN equivalence between different volumes of adjoint QCD [4]. This holds
as long as the theory is in the confined phase in both volumes. It is a generalization of largeN
Eguchi-Kawai volume reduction originally proposed for Yang-Mills theory [5], with the important
exception that in adjoint QCD it is conjectured that the center symmetry does not break in the small
volume limit [4], as it does in Yang-Mills theory [6]. This issupported by the lattice simulations in
[7]. The overall idea is to use these equivalences to study the a largeN, large volume limit of QCD
by means of simulations of adjoint QCD in small volumes.

The second technique involves implementation of QCD or QCD-like theories analytically on
a finite volume, with small enough spatial volume that perturbative analysis becomes valid. Specif-
ically, we implement adjoint QCD on the sphere,S1×S3, following the technique in [8]. Perturba-
tive analysis is valid when the size of the compact space is small compared with the strong coupling
scale, min[RS1,RS3] ≪ Λ−1

QCD. In addition, when we takeRS3 to be small, then the weak-coupling
analogue of the confining-deconfining transition of pure Yang-Mills theory is accessible at large
N [8]. There is a trade-off which makes this possible. In orderto have true phase transitions it is
necessary to have an infinite number of degrees of freedom. This can be achieved by taking the
volume to be large, or taking the number of colors,N, to be large.

It is first in the weak-coupling largeN, small volume limit that we work. However, it is also
possible to uncover the phase diagram at smallerN, at small volumes, with the caveat that the
transitions are smoothed out and it would be necessary to take the infinite volume limit to make
them true, sharp, transitions. It is particularly interesting to compare theN = 3 results for the phase
diagram of adjoint QCD onS1×S3 with the lattice results of Cossu and D’Elia [9]. Adjoint QCD,
with fermions of finite massm, has a rich phase diagram with not only confining, and deconfining
phases, but partially confining phases as well, so it serves well to show the amount of agreement
possible in comparisons between these two methods. The phase diagram onS1×S3 also shows that
the confining region, for which largeN volume independence holds, persists for allLS1/RS3 when
mRS3 is below some critical value.
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2. One-loop effective action

Following [1, 8, 10, 11], one can derived the one-loop effective action onS1×S3 for SU(N)

gauge theory withND
f Dirac flavors of fermions in the representationR, and with massm and

chemical potentialµ . The only zero mode,α , is given by the average of the temporal gauge field
A0 over the volume of the sphere:

α ≡ 1
Vol(S1×S3)

∫

S1×S3
dτ d3x A0(x).

In terms of the order parameter for the confinement-deconfinement transitions, the Polyakov loop
P = eLα = diag{eiθ1, ...,eiθN}, the effective action is (neglecting the Casimir term)

S(P) =
∞

∑
n=1

1
n

(1−zb(nL/R))TrAPn

+
∞

∑
n=1

(±1)n

n
ND

f zf (nL/R,mR)
[

enLµTrR(P†n)+e−nLµTrR(Pn)
]

,

(2.1)

whereL is the length ofS1, andR is the radius ofS3. TrA indicates a trace in the adjoint repre-
sentation. The top sign in(±1)n corresponds to the case of periodic boundary conditions onS1

for fermions and the bottom sign is for antiperiodic (thermal) boundary conditions. The first term,

∑∞
n=1

1
nTrAPn, results from the Jacobian in the partition function for converting from integrals over

SU(N) gauge fields to integrals over the Polyakov loop eigenvalue angles. The second and third
terms, containingzb andzf , are the bosonic and fermionic contributions, respectively. These are
determined from the energiesεl and degeneraciesdl resulting from the action of the laplacian on
vector and fermion fields onS1×S3. They are given by [1, 8]

zb(nL/R) =
∞

∑
l=0

d(v,T)
l e−nLε (v,T)

l =
∞

∑
l=0

2l(l +2)e−nL(l+1)/R

zf (nL/R,mR) =
∞

∑
l=0

d( f )
l e−nL

√

ε ( f )2
l +m2

= 2
∞

∑
l=1

l(l +1)e−nL
√

(l+1/2)2+m2R2/R,

(2.2)

where(v,T) indicates that the contribution to the bosonic term is from the action of the laplacian
on transverse vector fields.

In what follows we concentrate on adjoint QCD, with zero chemical potential1. The one-loop
effective action for adjoint QCD withNf Majorana fermion flavors with massm, and chemical
potentialµ = 0 simplifies to

S(P) =
∞

∑
n=1

1
n

(1−zv(nL/R)+Nf zf (nL/R,mR))
N

∑
i, j=1

cos[n(θi −θ j)], (2.3)

where the application of periodic boundary conditions on the adjoint fermions makes the fermion
contribution to the effective action positive, such that this term favors the confined phase, where
TrPn = 0. Periodic boundary conditions on fermions are required for largeN volume independence
in adjoint QCD [4].

1It is also interesting to study QCD at finite chemical potential onS1×S3, which is currently under investigation
[12].
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3. Obtaining the phase diagram

To calculate observables it is necessary to consider the partition function for adjoint QCD,

Z(L/R) =
∫

[dθ ]exp{−
∞

∑
n=1

1
n

(1−zv(nL/R)+Nf zf (nL/R,mR)) |TrPn|2}, (3.1)

where the integrals over theSU(N) gauge fields have been converted into integrals over the Polyakov
loop eigenvalue angles with the Jacobian, exp{−∑∞

n=1
1
n |TrPn|2}. Notice that in the largeR limit,

i.e., onS1×R
3, the Jacobian term is subdominant and does not contribute. In the largeR limit we

can use the saddle point approximation to evaluate the partition function by considering the effec-
tive action as the (finite) effective potential multiplied by the (infinite) 4-volume. We can also use
the saddle point approximation in the largeN limit by normalizing the Polyakov loop appropriately,
ρn ≡ 1

NTrPn. The partition function is then

Z(L/R) =

∫

[dθ ]exp{−N2
∞

∑
n=1

1
n

fn |ρn|2}, (3.2)

where we definedfn ≡ 1− zv(nL/R) + Nf zf (nL/R,mR). Note that onS1 ×S3 the saddle point
approximation is only strictly valid whenN is large. However, for smaller values ofN, even
as small asN = 2,3, we can show that the saddle point approximation still picks out the most
favoured configuration, however, nearby configurations also contribute, causing the transitions to
be smoothed out. The phase diagram can be obtained by using the saddle point approximation to
determine the preferred configurations, in the limit of small N, but it is very important to check that
the global minima ofSdon’t have closely competing local minima and to compare theresults for
TrP against plots ofe−STrP/Z as a function of the full configuration space, as discussed in[1].

In the largeN limit it is helpful to consider a distribution of the Polyakov loop eigenvalue
angles. To this end we define the distribution

ρ(θ) ≡ 1
N

N

∑
i=1

δ (θ −θi) (3.3)

such thatρn =
∫

einθ ρ(θ)dθ = 1
NTr(Pn). This allows us to Fourier analyze the distribution

ρ(θ) =
1

2π

∞

∑
n=−∞

ρ−neinθ , (3.4)

whereρ−n = ρ∗
n andρ0 = 1.

The phase diagram is obtained by minimizing the actionS= N2∑∞
n=1

1
n fn |ρn|2 for various

dimensionless quantitiesmL, mR, andL/R, to determine the preferred values of theρn. The details
of obtaining the phase diagram can be found in [1], but the basic idea is that the sign of thefn
determine the whether it is preferable to maximize or minimize the|ρn|. If all the fn are positive
then the preferred phase determined by the minimum of the action is obtained when all theρn = 0.
This corresponds to the confined phase. However, if one of thefk becomes negative, then we see
a transition, where the correspondingρk 6= 0 is preferred. For negativefk the equations of possible
negative actions in the space of all the|ρn| take the form of two-sheeted hyperboloids pointing in
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Figure 1: Phase diagram of adjoint QCD at largeN for Nf = 2 in the (Left)(L/R,mL) plane and (Right)
(L/R,mR) plane.

the direction of|ρk|. The minimum action configuration is defined by the point where the boundary
of the allowed configuration space,ρ(θ) ≥ 0, is tangent to one of these hyperboloids.

If one plotsρ(θ) in the region where one of thefk < 0, it becomes clear that this distribution
of Polyakov loop angles around the circle hask gaps, and therefore we say the system is in the
k-gap phase, which is generally defined by

ρk =
1
N

TrPk 6= 0,

ρl =
1
N

TrPl = 0, for mod[l ,k] 6= 0.

(3.5)

Of course the 1-gap phase is the deconfined phase with|ρ1| maximized.

4. Large N results

To show how the largeN phase diagram of adjoint QCD depends on the fermion mass and the
volume we plot the phase diagram as a function of the dimensionless quantitiesL/R, mL, andmR.
This is shown forNf = 2 in Figure 1 in the(L/R,mL) plane (Left) and(L/R,mR) plane (Right).
ForNf = 1 the results are similar except that only the confined and deconfined phases are observed
[1]. For Nf ≥ 2 we find infinite possible phases. However, the confined phasepersists for all
L/R whenmRis below a certain critical value which increases withNf . Above(mR)c the gapped
phases persist for allmL if L/R→ 0, which is the limit ofS1×R

3. The confinement-deconfinement
transition of the pureSU(N) Yang-Mills theory is indicated by the(L/R)c = 1.317 line [8].

While the fn = 0 curves are approximate locations of the transitions, the actual transition lines
only very slightly differ, for example, onS1 ×R

3 the transition between the 1 and 2-gap phases
occurs formL≃ 2.020 [11] as indicated by the arrow pointing to themL-axis in Figure 1 (Left),
whereas themLasymptote of thef1 = 0 curve is given bymL≃ 2.027.
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Figure 2: QCD(Adj) for N = 3, Nf = 4: (Left) (mR, L/R). L = 2πRS1. Only the confined phase persists for
mR. 3.6; (Right) Results from lattice simulations of Cossu and D’Elia [9] on aLc×163 lattice.β is related
to the inverse couplingβ = 2N/g2.
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Figure 3: TrP as a function ofLS1 for fixedm: (Left) 1
3ProjZ(3)TrP as a function ofL/RonS1×S3 for mR=

6. (Right) Histograms of Im[TrP] vs. Re[TrP] for increasingLc on aLc×163 lattice [9], withma= 0.10.

5. Finite N results and comparison with lattice data

In [9], Cossu and D’Elia compute the phase diagram of adjointQCD using lattice simulations
for N = 3 andNf = 4 (i.e., ND

f = 2), their results are shown in Figure 2 (Right). To compare
with their results we also calculated the phase diagram forN = 3, Nf = 4 onS1×S3, by using the
saddle point approximation and minimizing the effective action with respect to the Polyakov loop
eigenvalue angles, as shown in Figure 2 (Left). The effective action was additionally plotted in
theθ1θ2-plane to show that the minima determined from the saddle point approximation are well-
defined and other local minima compete only minimally. The benefit of using the saddle-point
approximation for theS1×S3 results is that we obtain the Polyakov loop eigenvalue angles and can
classify the phases accordingly.

Perhaps a better comparison is shown in Figure 3 where we fix the mass and compare the
Polyakov loop as a function of the temporal extentL on S1×S3 with the lattice results in [9]. The
agreement is good considering that the phases appear in the same order asL/R is increased and
that the results even show a similar decline in the magnitudeof |TrP| atL/R is increased within the
deconfined phase. Of course, using the saddle point approximation for theS1×S3 results causes
the transitions to appear sharper than they actually are in afinite volume, and the magnitude|TrP|
is actually a bit less, so the agreement is actually even a bitbetter than what is shown in Figure 3.
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6. Conclusions

The implication of these results for volume independence atlargeN in adjoint QCD is that the
confined phase persists for allL/RwhenmRis below a certain critical value that increases withNf .
This could be checked in lattice simulations. Additionally, theN = 3 phase diagram fromS1×S3

compares well with the lattice results of [9], with the exception that for adjoint QCD onS1×S3

the confined phase persists for allL/R for small enoughmR, whereas from the lattice results this is
ambiguous. Additionally, the technique used for obtainingthe phase diagram onS1×S3 for adjoint
QCD could also be used to study QCD and other QCD-like theories.
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