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1. Introduction

The calculation of observable quantities in the confinedsptaf QCD and many QCD-like
theories is complicated by the fact that the coupling stifegylarge. Lattice simulations are the
dominant technique for performing calculations in the auinfj, strong coupling limit, however,
they can be computationally demanding since large latimmssare often required. In this proceed-
ings we discuss aspects of two shortcuts that can be takethtg(or separately) to obtain quick
gualitative results from QCD and QCD-like theories. It iséd on our recent paper [1].

The first technique involves the use of two lafgequivalences. One, called orientifold pla-
nar equivalence, is the larde equivalence betweeBU(N) [or U (N)] gauge theory with adjoint
fermions (adjoint QCD), an8U(N) gauge theory with symmetric or antisymmetric representati
fermions [QCD(AS/S)] [2]. This is true as long as charge agation symmetry is not broken in
QCD(AS/S) [3], and for only the bosonic subsector of adj@@D. In the case dfl = 3, QCD(AS)
is equivalent to QCD, so the lar@g¢limit of QCD(AS) is also a largéN limit of QCD. The second
equivalence is the largd equivalence between different volumes of adjoint QCD [4jisTholds
as long as the theory is in the confined phase in both voluntés. al generalization of largil
Eguchi-Kawai volume reduction originally proposed for YaMills theory [5], with the important
exception that in adjoint QCD it is conjectured that the eesymmetry does not break in the small
volume limit [4], as it does in Yang-Mills theory [6]. This sipported by the lattice simulations in
[7]. The overall idea is to use these equivalences to stugla targeN, large volume limit of QCD
by means of simulations of adjoint QCD in small volumes.

The second technique involves implementation of QCD or Q&®theories analytically on
a finite volume, with small enough spatial volume that pdxdtive analysis becomes valid. Specif-
ically, we implement adjoint QCD on the spheg x S, following the technique in [8]. Perturba-
tive analysis is valid when the size of the compact space @l smmpared with the strong coupling
scale, minRg«, Rg| < /\C_géD' In addition, when we takRgs to be small, then the weak-coupling
analogue of the confining-deconfining transition of pure gfills theory is accessible at large
N [8]. There is a trade-off which makes this possible. In ortdenave true phase transitions it is
necessary to have an infinite number of degrees of freedors. céh be achieved by taking the
volume to be large, or taking the number of cold¥sto be large.

It is first in the weak-coupling larghl, small volume limit that we work. However, it is also
possible to uncover the phase diagram at smadleat small volumes, with the caveat that the
transitions are smoothed out and it would be necessary #ottakinfinite volume limit to make
them true, sharp, transitions. Itis particularly inteiregto compare th&l = 3 results for the phase
diagram of adjoint QCD oS! x S* with the lattice results of Cossu and D’Elia [9]. Adjoint QCD
with fermions of finite masm, has a rich phase diagram with not only confining, and decioigfin
phases, but partially confining phases as well, so it senatistavshow the amount of agreement
possible in comparisons between these two methods. The plegam ors! x S* also shows that
the confining region, for which largd volume independence holds, persists forLall/Rs when
MRs is below some critical value.
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2. One-loop effective action

Following [1, 8, 10, 11], one can derived the one-loop effecaction onS' x S for SU(N)
gauge theory witiNP Dirac flavors of fermions in the representatiefy and with massn and
chemical potentiali. The only zero modey, is given by the average of the temporal gauge field
A over the volume of the sphere:

_ 1 3
a= VoIS x &) /Slxssdrd X Ao(X).
In terms of the order parameter for the confinement-decaniém transitions, the Polyakov loop
P =¢€-9 =diag{€?,...,é%}, the effective action is (neglecting the Casimir term)

o)

SP)= 3 +(1-2(nL/R) TraP"
i 2.1)

n
L NPz (nL/R MR [T (PT") + & i (P)]

whereL is the length ofS', andR is the radius ofs®. Tr, indicates a trace in the adjoint repre-
sentation. The top sign itt=1)" corresponds to the case of periodic boundary conditionS'ton
for fermions and the bottom sign is for antiperiodic (thebn@undary conditions. The first term,
S et %TrAP”, results from the Jacobian in the partition function forvaming from integrals over
SU(N) gauge fields to integrals over the Polyakov loop eigenvahgies. The second and third
terms, containingy, andz;, are the bosonic and fermionic contributions, respegtivéhese are
determined from the energies and degeneraciad resulting from the action of the laplacian on
vector and fermion fields o8' x S°. They are given by [1, 8]

nL/R %d (wT) —nL£| %2 _|_2 —nL(1+1)/R

(2.2)
z;(nL/RmR) = %d _nLV5| 2 22| (I1+1) —nL\/m/R

where(v, T) indicates that the contribution to the bosonic term is frben action of the laplacian
on transverse vector fields.

In what follows we concentrate on adjoint QCD, with zero cheahpotential'. The one-loop
effective action for adjoint QCD witiNs Majorana fermion flavors with mags, and chemical
potentialy = 0 simplifies to

) N

SP)= Y ~(1-2(nL/R)+ Nizg (IL/R.R) > cosn(6l — )] (2.3)

n=1 i,]=1
where the application of periodic boundary conditions andtjoint fermions makes the fermion
contribution to the effective action positive, such thas tterm favors the confined phase, where
TrP" = 0. Periodic boundary conditions on fermions are requiredaigeN volume independence
in adjoint QCD [4].

Lit is also interesting to study QCD at finite chemical potaintin St x S, which is currently under investigation
[12].
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3. Obtaining the phase diagram

To calculate observables it is necessary to consider thigigafunction for adjoint QCD,

Z(L/R):/ (6] exp{ — Z (1—2/(nL/R) + Niz; (nL/R mR) [TrP"/?}. 3.1)

where the integrals over tf&J(N) gauge fields have been converted into integrals over theRoly
loop eigenvalue angles with the Jacobian, x|y, = L TrP"|2}. Notice that in the larg® limit,
i.e., onS' x R3, the Jacobian term is subdominant and does not contributiellarger limit we
can use the saddle point approximation to evaluate theiparfunction by considering the effec-
tive action as the (finite) effective potential multiplieg the (infinite) 4-volume. We can also use
the saddle point approximation in the lafgdimit by normalizing the Polyakov loop appropriately,
Pn= ﬁTrP”. The patrtition function is then

Z(L/R) = / [d6] exp{ —N?2 i%fn\pn\z}, (3.2)

where we defined,, = 1— z,(nL/R) + N¢z¢(nL/R,mR). Note that onS! x S’ the saddle point
approximation is only strictly valid whelN is large. However, for smaller values bf, even
as small adN = 2,3, we can show that the saddle point approximation still pickt the most
favoured configuration, however, nearby configurations atmtribute, causing the transitions to
be smoothed out. The phase diagram can be obtained by usirsgdidle point approximation to
determine the preferred configurations, in the limit of drivglbut it is very important to check that
the global minima ofSdon’t have closely competing local minima and to compareréselts for
TrP against plots o0& STrP/Z as a function of the full configuration space, as discussétlin

In the largeN limit it is helpful to consider a distribution of the Polyakdoop eigenvalue
angles. To this end we define the distribution

1N
= 215 6-8) (3.3)
such thato, = [€"p(8)do = £ Tr(P"). This allows us to Fourier analyze the distribution

p(6) = 1 Z p_ne"?, (3.4)

nf—oo

wherep_, = p; andpg =1

The phase diagram is obtained by minimizing the actona sz;’{’zlr—l]fn\pnyz for various
dimensionless quantitieal, mR andL/R, to determine the preferred values of fhe The details
of obtaining the phase diagram can be found in [1], but théckidsa is that the sign of thé,
determine the whether it is preferable to maximize or mimarthe|p,|. If all the f, are positive
then the preferred phase determined by the minimum of thereist obtained when all the, = 0.
This corresponds to the confined phase. However, if one ofghecomes negative, then we see
a transition, where the correspondipg+ O is preferred. For negativk the equations of possible
negative actions in the space of all thmg| take the form of two-sheeted hyperboloids pointing in
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Figure 1: Phase diagram of adjoint QCD at larefor N; = 2 in the (Left)(L/R,mL) plane and (Right)
(L/R,mR) plane.

the direction of px|. The minimum action configuration is defined by the point vettbe boundary
of the allowed configuration spage(8) > 0, is tangent to one of these hyperboloids.

If one plotsp(6) in the region where one of thiz < 0, it becomes clear that this distribution
of Polyakov loop angles around the circle Hagaps, and therefore we say the system is in the
k-gap phase, which is generally defined by

pe= TP 40
1 (3.5)
o= NTrP =0, for modl, k] # 0.

Of course the 1-gap phase is the deconfined phase pyitimaximized.

4. Large N results

To show how the largdl phase diagram of adjoint QCD depends on the fermion massand t
volume we plot the phase diagram as a function of the dimatese quantitiet /R, mL, andmR
This is shown folNs = 2 in Figure 1 in theglL/R mL) plane (Left) andL/R,mR) plane (Right).
ForN; = 1 the results are similar except that only the confined andrdawed phases are observed
[1]. For N¢ > 2 we find infinite possible phases. However, the confined ppasssts for all
L/RwhenmRis below a certain critical value which increases with Above (mR); the gapped
phases persist for atiLif L /R — 0, which is the limit ofS' x R3. The confinement-deconfinement
transition of the pur&U(N) Yang-Mills theory is indicated by th@./R). = 1.317 line [8].

While the f,, = 0 curves are approximate locations of the transitions, theshtransition lines
only very slightly differ, for example, o$' x R? the transition between the 1 and 2-gap phases
occurs formL ~ 2.020 [11] as indicated by the arrow pointing to timt-axis in Figure 1 (Left),
whereas thenL asymptote of the; = 0 curve is given bynlL ~ 2.027.



Volume dependence of massive adjoint QCD at weak coupling Joyce C. Myers

6.1 -

6 re-confined phase ,,_—’%""_*
5.9+ //’ -
58l g split phase

85.77

5.6

5.5 deconfined phase

5.4—/V/_/—9————
53 _

confined phase

52 . I . I . I . I . | R
0 0.02 0.04 0.06 0.08 0.1 0.12
am

Figure2: QCD(Adj)) for N = 3, Nf = 4: (Left) (MR L/R). L = 2riRq. Only the confined phase persists for
mR< 3.6; (Right) Results from lattice simulations of Cossu and I 9] on al. x 16° lattice. 8 is related
to the inverse coupling = 2N/g°.
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Figure3: TrP as a function of.q for fixed m: (Left) %Projz(s)TrP as a function of. /RonS! x S* for mR=
6. (Right) Histograms of IfTrP] vs. ReTrP] for increasing-. on al¢ x 16° lattice [9], withma= 0.10.

5. Finite N results and comparison with lattice data

In [9], Cossu and D’Elia compute the phase diagram of adfQi@D using lattice simulations
for N = 3 andN¢ = 4 (i.e.,, NP = 2), their results are shown in Figure 2 (Right). To compare
with their results we also calculated the phase diagranNfer3, Ny = 4 onS' x S, by using the
saddle point approximation and minimizing the effectivéacwith respect to the Polyakov loop
eigenvalue angles, as shown in Figure 2 (Left). The effectistion was additionally plotted in
the 6, 6,-plane to show that the minima determined from the saddlet @gproximation are well-
defined and other local minima compete only minimally. Thadfié of using the saddle-point
approximation for thé&! x S results is that we obtain the Polyakov loop eigenvalue arae can
classify the phases accordingly.

Perhaps a better comparison is shown in Figure 3 where wedixndiss and compare the
Polyakov loop as a function of the temporal exterdn St x S® with the lattice results in [9]. The
agreement is good considering that the phases appear i arder ag /R is increased and
that the results even show a similar decline in the magnitdi¢ierP| atL /Ris increased within the
deconfined phase. Of course, using the saddle point appatigimfor theS! x S° results causes
the transitions to appear sharper than they actually ardinite volume, and the magnitud@rP|
is actually a bit less, so the agreement is actually evenlzeltier than what is shown in Figure 3.
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6. Conclusions

The implication of these results for volume independendargéN in adjoint QCD is that the
confined phase persists for BJfRwhenmRis below a certain critical value that increases vith
This could be checked in lattice simulations. AdditionalyeN = 3 phase diagram frorg' x S
compares well with the lattice results of [9], with the exiiep that for adjoint QCD orS! x S
the confined phase persists forlafIR for small enoughmR whereas from the lattice results this is
ambiguous. Additionally, the technique used for obtairtmgphase diagram @&t x S* for adjoint
QCD could also be used to study QCD and other QCD-like theorie
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